Design of a Linear Wavenumber Spectrometer for Line Scanning Optical Coherence Tomography with 50 mm Focal Length Cylindrical Optics
Abstract
:1. Introduction
2. Theory and Properties
3. Spectrometer with Reflective Grating and Prism
Spectrometer Analysis
4. Spectrometer with Grism
Spectrometer Analysis
5. Comparison of All the Spectrometers
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, S.; Crose, M.; Eldridge, W.J.; Cox, B.; Brown, W.J.; Wax, A. Design and implementation of a low-cost, portable OCT system. Biomed. Opt. Express 2018, 9, 1232–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A.; et al. Optical coherence tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaluzny, B.J.; Kaluzny, J.J.; Szkulmowska, A.; Gorczynska, I.; Szkulmowski, M.; Bajraszewski, T.; Wojtkowski, M.; Targowski, P. Spectral optical coherence tomography: A novel technique for cornea imaging. Cornea 2006, 25, 960–965. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Liu, X.; Wei, C.; Xu, Z.J.; Sim, S.S.W.; Liu, L.; Xu, C. Micro-optical coherence tomography tracking of magnetic gene transfection via Au–Fe3O4 dumbbell nanoparticles. Nanoscale 2015, 7, 17249–17253. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Gardecki, J.A.; Nadkarni, S.K.; Toussaint, J.D.; Yagi, Y.; Bouma, B.E.; Tearney, G.J. Imaging the subcellular structure of human coronary atherosclerosis using micro–optical coherence tomography. Nat. Med. 2011, 17, 1010–1014. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.H.; Tearney, G.J.; de Boer, J.F.; Iftimia, N.; Bouma, B.E. High-speed optical frequency-domain imaging. Opt. Express 2003, 11, 2953–2963. [Google Scholar] [CrossRef] [Green Version]
- Wojtkowski, M.; Srinivasan, V.J.; Ko, T.H.; Fujimoto, J.G.; Kowalczyk, A.; Duker, J.S. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt. Express 2004, 12, 2404–2422. [Google Scholar] [CrossRef]
- Leitgeb, R.; Hitzenberger, C.; Fercher, A.F. Performance of fourier domain vs. time domain optical coherence tomography. Opt. Express 2003, 11, 889–894. [Google Scholar] [CrossRef]
- Fercher, A.F.; Hitzenberger, C.K.; Kamp, G.; El-Zaiat, S.Y. Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 1995, 117, 43–48. [Google Scholar] [CrossRef]
- Wu, T.; Sun, S.; Wang, X.; Zhang, H.; He, C.; Wang, J.; Gu, X.; Liu, Y. Optimization of linear-wavenumber spectrometer for high-resolution spectral domain optical coherence tomography. Opt. Commun. 2017, 405, 171–176. [Google Scholar] [CrossRef]
- Dorrer, C.; Belabas, N.; Likforman, J.P.; Joffre, M. Spectral resolution and sampling issues in Fourier-transform spectral interferometry. JOSA B 2000, 17, 1795–1802. [Google Scholar] [CrossRef]
- Gelikonov, V.; Gelikonov, G.; Shilyagin, P. Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography. Opt. Spectrosc. 2009, 106, 459–465. [Google Scholar] [CrossRef]
- Yun, S.H.; Tearney, G.; De Boer, J.; Bouma, B. Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting. Opt. Express 2004, 12, 4822–4828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; An, L.; Lan, G.; Johnstone, M.; Malchow, D.S.; Wang, R.K. Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate. J. Biomed. Opt. 2013, 18, 016012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samadi, S.; Dargahi, J.; Narayanswamy, S. Design and Optimization of a Linear Wavenumber Spectrometer with Cylindrical Optics for Line Scanning Optical Coherence Tomography. Sensors 2021, 21, 6463. [Google Scholar] [CrossRef]
- An, L.; Li, P.; Lan, G.; Malchow, D.; Wang, R.K. High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth. Biomed. Opt. Express 2013, 4, 245–259. [Google Scholar] [CrossRef]
- Hu, Z.; Pan, Y.; Rollins, A.M. Analytical model of spectrometer-based two-beam spectral interferometry. Appl. Opt. 2007, 46, 8499–8505. [Google Scholar] [CrossRef]
- Blackman, M. US patents in 1856. World Pat. Inf. 2006, 28, 251–257. [Google Scholar] [CrossRef]
- Hitzenberger, C.K.; Gibson, A. Continuing the success of Biomedical Optics Express. Biomed. Opt. Express 2016, 7, 420–421. [Google Scholar] [CrossRef] [Green Version]
- Chong, S.P.; Zhang, T.; Kho, A.; Bernucci, M.T.; Dubra, A.; Srinivasan, V.J. Ultrahigh resolution retinal imaging by visible light OCT with longitudinal achromatization. Biomed. Opt. Express 2018, 9, 1477–1491. [Google Scholar] [CrossRef] [Green Version]
- Drexler, W.; Fujimoto, J.G. Optical coherence tomography in ophthalmology. J. Biomed. Opt. 2007, 12, 041201. [Google Scholar] [CrossRef]
- Wu, H.; Sun, Z.; Huang, Z.; Chen, J.; Xiao, R. Beam propagation through an optical system with the two-adaptive-optics configuration and beam shaping. Opt. Laser Technol. 2013, 47, 315–322. [Google Scholar] [CrossRef]
- Lee, S.S.; Song, W.; Choi, E.S. Spectral domain optical coherence tomography imaging performance improvement based on field curvature aberration-corrected spectrometer. Appl. Sci. 2020, 10, 3657. [Google Scholar] [CrossRef]
- Kamal, M.; Sivakumar, N.R.; Packirisamy, M. Optimized off-axis cylindrical mirror-focused line-scanning system for optical coherence tomography imaging applications. J. Biomed. Opt. 2012, 17, 056006. [Google Scholar] [CrossRef] [PubMed]
- Lawman, S.; Dong, Y.; Williams, B.M.; Romano, V.; Kaye, S.; Harding, S.P.; Willoughby, C.; Shen, Y.C.; Zheng, Y. High resolution corneal and single pulse imaging with line field spectral domain optical coherence tomography. Opt. Express 2016, 24, 12395–12405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazaili, A.; Lawman, S.; Geraghty, B.; Eliasy, A.; Zheng, Y.; Shen, Y.; Akhtar, R. Line-Field Optical Coherence Tomography as a tool for In vitro characterization of corneal biomechanics under physiological pressures. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef]
- Samadi, S.; Narayanswamy, S.; Dargahi, J. Design of an All-reflective Line Based Spectrometer for Optical Coherence Tomography. In Proceedings of the 2020 Photonics North (PN), Niagara Falls, ON, Canada, 26–28 May 2020; p. 1. [Google Scholar]
- Kamal, M.; Narayanswamy, S.; Packirisamy, M. Optical design of a line-focused forward-viewing scanner for optical coherence tomography. Appl. Opt. 2010, 49, 6170–6178. [Google Scholar] [CrossRef]
- OCT Cross Sectional Imaging. Available online: https://andor.oxinst.com/learning/view/article/line-field-optical-coherence-tomography (accessed on 10 March 2022).
- Samadi, S.; Narayanswamy, S.; Dargahi, J.; Mohazzab, M. Design of a linear K-Space Spectrometer with GRISM for Line Scanning Optical Coherence Tomography. In Proceedings of the 2021 Photonics North (PN), Toronto, ON, Canada, 31 May–2 June 2021; p. 1. [Google Scholar]
- Varley, R.; Tsiaras, A.; Karpouzas, K. Wayne—A Simulator for HST WFC3 IR Grism Spectroscopy. Astrophys. J. Suppl. Ser. 2017, 231, 13. [Google Scholar] [CrossRef]
- Oesch, P.; Brammer, G.; Van Dokkum, P.; Illingworth, G.; Bouwens, R.; Labbé, I.; Franx, M.; Momcheva, I.; Ashby, M.; Fazio, G.; et al. A remarkably luminous galaxy at z = 11.1 measured with Hubble space telescope Grism spectroscopy. Astrophys. J. 2016, 819, 129. [Google Scholar] [CrossRef] [Green Version]
Spectrometer | Wavelength (nm) | Nonlinearity Error (Δθ/Δk) | SR Ratio |
---|---|---|---|
Transmission grating [15] | 730–930 | 147.0115 | 0.98–0.996 |
Reflective grating [27] | 730–930 | 157 | 0.96–0.97 |
Transmission grating + prism [15] | 730–930 | 0.0149 | 0.55–0.98 |
Reflective grating (180 mm radius) + prism [15] | 730–930 | 0.03517 | 0.95–0.98 |
Reflective grating (50 mm radius) + prism | 730–930 | 10.75 | 0.8–0.96 |
Grism | 730–930 | 0.792 | 0.97–0.98 |
Spectometer | Wavelength (nm) | SR Ratio |
---|---|---|
Grism (d = 1616) | 730–930 | 0.801–0.949 |
Grism (d = 1584) | 730–930 | 0.858–0.959 |
Grism ( 50.05 mm radius) | 730–930 | 0.832–0.937 |
Grism (49.95 mm radius) | 730–930 | 0.881–0.971 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samadi, S.; Mohazzab, M.; Dargahi, J.; Narayanswamy, S. Design of a Linear Wavenumber Spectrometer for Line Scanning Optical Coherence Tomography with 50 mm Focal Length Cylindrical Optics. Sensors 2022, 22, 3278. https://doi.org/10.3390/s22093278
Samadi S, Mohazzab M, Dargahi J, Narayanswamy S. Design of a Linear Wavenumber Spectrometer for Line Scanning Optical Coherence Tomography with 50 mm Focal Length Cylindrical Optics. Sensors. 2022; 22(9):3278. https://doi.org/10.3390/s22093278
Chicago/Turabian StyleSamadi, Sevin, Masoud Mohazzab, Javad Dargahi, and Sivakumar Narayanswamy. 2022. "Design of a Linear Wavenumber Spectrometer for Line Scanning Optical Coherence Tomography with 50 mm Focal Length Cylindrical Optics" Sensors 22, no. 9: 3278. https://doi.org/10.3390/s22093278
APA StyleSamadi, S., Mohazzab, M., Dargahi, J., & Narayanswamy, S. (2022). Design of a Linear Wavenumber Spectrometer for Line Scanning Optical Coherence Tomography with 50 mm Focal Length Cylindrical Optics. Sensors, 22(9), 3278. https://doi.org/10.3390/s22093278