A Gaussian Process State Space Model Fusion Physical Model and Residual Analysis for Fatigue Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physical Model for Fatigue Life by Residual Stress
2.2. Gaussian Process
2.3. Gaussian Process State–Space Model Integrating Physical Model and Residual
2.4. GP-SS Model for Fatigue Evaluation
Algorithm 1: The Algorithm of GP-SS |
Input: The residual stress (), and the initial residual stress Output: The logarithm cycle S. |
• Through the historical data and the current logarithm cycle (((),, optimize the GP model to obtain the predicted logarithmic fatigue cycle • The predicted residual stress is obtained by substituting the predicted logarithmic fatigue cycle into the physical model. Then, calculate the residuals to obtain the sequence of weight in Equation (15). • Through the physical model, the logarithmic cycle , predicted by the physical model, is obtained. • Calculate the corrected assessment results |
3. Experimental Setup
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Symbols | |
GP | Gaussian process |
SSM | State–space model |
PF | Particle filter |
Probability density function | |
GP-SS | Gaussian process state–space |
SVR | Support vector regression |
Nomenclature | |
Initial residual stress and residual stress | |
Material constants in the physical model for fatigue life | |
Degree of cold work hardening | |
Number of cycles | |
Relaxation exponent | |
State variable in the hidden or observation space | |
Initial residual stress and residual stress | |
Logarithmic cycle period | |
Weight of distance | |
The residual | |
Residual measurement function | |
Linear kernel | |
kernel |
References
- Kozhokhina, O.; Yutskevych, S.; Radchenko, O.; Gribov, V.; Chuzha, O. Method of Statistical Data Processing for Two-Stage Fatigue Tests. In Proceedings of the 2020 10th International Conference on Advanced Computer Information Technologies (ACIT), Deggendorf, Germany, 16–18 September 2020; IEEE: Piscataway, NY, USA; pp. 160–164. [Google Scholar]
- Daura, L.U.; Tian, G.Y. Wireless Power Transfer Based Non-Destructive Evaluation of Cracks in Aluminum Material. IEEE Sens. J. 2019, 19, 10529–10536. [Google Scholar] [CrossRef]
- Nguyen, H.-P.; Liu, J.; Zio, E. Ensemble of Models for Fatigue Crack Growth Prognostics. IEEE Access 2019, 7, 49527–49537. [Google Scholar] [CrossRef]
- Li, J.; Cai, J.M.; Duan, R.; Huang, X. Fatigue Crack Growth Behavior of TA29 Titanium Alloy at Different Temperatures. In Materials Science Forum; Trans Tech Publications Ltd.: Bäch, Switzerland, 2020; Volume 993, pp. 259–266. [Google Scholar]
- Boljanović, S. Fatigue performance evaluation for crack-like surface flaws. Int. J. Fatigue 2019, 124, 371–379. [Google Scholar] [CrossRef]
- Qin, Z.; Li, B.; Zhang, H.; Wilfried, T.Y.A.; Gao, T.; Xue, H. Effects of shot peening with different coverage on surface integrity and fatigue crack growth properties of 7B50-T7751 aluminum alloy. Eng. Fail. Anal. 2022, 133, 106010. [Google Scholar] [CrossRef]
- Wang, R.; Song, Q.; Liu, Z.; Ma, H.; Gupta, M.K.; Liu, Z. A Novel Unsupervised Machine Learning-Based Method for Chatter Detection in the Milling of Thin-Walled Parts. Sensors 2021, 21, 5779. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, W.; Tang, D.; Zhang, L.; Wang, Y.; Miao, E. Thermal Deformation Modeling for Phased Array Antenna Compensation Control. Sensors 2022, 22, 2325. [Google Scholar] [CrossRef]
- Chen, J.-W.; Huang, H.-K.; Fang, Y.-T.; Lin, Y.-T.; Li, S.-Z.; Chen, B.-W.; Lo, Y.-C.; Chen, P.-C.; Wang, C.-F.; Chen, Y.-Y. A Data-Driven Model with Feedback Calibration Embedded Blood Pressure Estimator Using Reflective Photoplethysmography. Sensors 2022, 22, 1873. [Google Scholar] [CrossRef]
- Ossai, C.I. Corrosion defect modelling of aged pipelines with a feed-forward multi-layer neural network for leak and burst failure estimation. Eng. Fail. Anal. 2020, 110, 104397. [Google Scholar] [CrossRef]
- Zhang, J.; Si, X.; Du, D.; Hu, C.; Hu, C. Lifetime Estimation for Multi-Phase Deteriorating Process with Random Abrupt Jumps. Sensors 2019, 19, 1472. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Song, Y.; Liu, X.; Hu, D. Probabilistic life prediction for FCG degradation process of turbine disc with small sample data. Eng. Fail. Anal. 2021, 120, 105026. [Google Scholar] [CrossRef]
- Dubuc, B.; Sitaropoulos, K.; Ebrahimkhanlou, A.; Salamone, S. Acoustic emission diagnostics of corrosion monitoring in prestressed concrete using hidden Markov and semi-Markov models. Struct. Health Monit. 2021, 20, 2899–2916. [Google Scholar] [CrossRef]
- Williams, C.K.; Rasmussen, C.E. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006; Volume 2. [Google Scholar]
- Yuan, S.; Wang, H.; Chen, J. A pzt based on-line updated guided wave-gaussian process method for crack evaluation. IEEE Sens. J. 2019, 20, 8204–8212. [Google Scholar] [CrossRef]
- Mohanty, S.; Chattopadhyay, A.; Peralta, P.; Das, S. Bayesian statistic based multivariate Gaussian process approach for offline/online fatigue crack growth prediction. Exp. Mech. 2011, 51, 833–843. [Google Scholar] [CrossRef]
- Mairal, J. End-to-end kernel learning with supervised convolutional kernel networks. Adv. Neural Inf. Process. Syst. 2016, 29, 1399–1407. [Google Scholar]
- Adams, R.P.; Murray, I.; MacKay, D.J. Tractable nonparametric Bayesian inference in Poisson processes with Gaussian process intensities. In Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009; pp. 9–16. [Google Scholar]
- Rong, H.; Teixeira, A.P.; Soares, C.G. Ship trajectory uncertainty prediction based on a Gaussian Process model. Ocean. Eng. 2019, 182, 499–511. [Google Scholar] [CrossRef]
- Liu, H.; Ong, Y.-S.; Shen, X.; Cai, J. When Gaussian process meets big data: A review of scalable GPs. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 4405–4423. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Xu, J. A new prognostics method for state of health estimation of lithium-ion batteries based on a mixture of Gaussian process models and particle filter. Microelectron. Reliab. 2015, 55, 1035–1045. [Google Scholar] [CrossRef]
- Yang, W.; Yuan, S.; Qiu, L.; Zhang, H.; Ling, B. A particle filter and Lamb wave based on-line prognosis method of crack propagation in aluminum plates. In Proceedings of the 4th International Symposium on Ndt in Aerospace, Augsburg, Germany, 13–15 November 2012. [Google Scholar]
- Zhu, J.; Zhang, W.; Li, X. Fatigue damage assessment of orthotropic steel deck using dynamic Bayesian networks. Int. J. Fatigue 2019, 118, 44–53. [Google Scholar] [CrossRef]
- Chen, J.; Yuan, S.; Wang, H. On-line updating Gaussian process measurement model for crack prognosis using the particle filter. Mech. Syst. Signal Process. 2020, 140, 106646. [Google Scholar] [CrossRef]
- Schwach, D.W.; Guo, Y.B. A fundamental study on the impact of surface integrity by hard turning on rolling contact fatigue. Int. J. Fatigue 2006, 28, 1838–1844. [Google Scholar] [CrossRef]
- Kodama, S. The behavior of residual stress during fatigue stress cycles. In Proceedings of the International Conference on Mechanical Behavior of Metals II, Kyoto, Japan, 15–20 August 1971; Society of Material Science: Tokyo, Japan, 1972; Volume 2, p. 111. [Google Scholar]
- Zaroog, O.S.; Ali, A.; Sahari, B.B.; Zahari, R. Modeling of residual stress relaxation of fatigue in 2024-T351 aluminium alloy. Int. J. Fatigue 2011, 33, 279–285. [Google Scholar] [CrossRef]
- Schajer, G.S.; Whitehead, P.S. Hole-drilling method for measuring residual stresses. Synth. SEM Lect. Exp. Mech. 2018, 1, 1–186. [Google Scholar] [CrossRef]
- Feng, Q.; Jiang, C.; Xu, Z. Residual stress relaxation of shot-peened deformation surface layer on duplex stainless steel under applied loading. J. Mater. Eng. Perform. 2014, 23, 408–412. [Google Scholar] [CrossRef]
- Chen, M.; Xing, S.; Liu, H.; Jiang, C.; Zhan, K.; Ji, V. Determination of surface mechanical property and residual stress stability for shot-peened SAF2507 duplex stainless steel by in situ X-ray diffraction stress analysis. J. Mater. Res. Technol. 2020, 9, 7644–7654. [Google Scholar] [CrossRef]
- Chen, Z. Gaussian Process Regression Methods and Extensions for Stock Market Prediction; University of Leicester: Leicester, HK, 2017. [Google Scholar]
- Zhang, C.; Wang, W.; Li, H. Tool wear prediction method based on symmetrized dot pattern and multi-covariance Gaussian process regression. Measurement 2021, 189, 110466. [Google Scholar] [CrossRef]
- Vaara, J.; Kunnari, A.; Frondelius, T. Literature review of fatigue assessment methods in residual stressed state. Eng. Fail. Anal. 2020, 110, 104379. [Google Scholar] [CrossRef]
- Piltan, F.; Toma, R.N.; Shon, D.; Im, K.; Choi, H.-K.; Yoo, D.-S.; Kim, J.-M. Strict-Feedback Backstepping Digital Twin and Machine Learning Solution in AE Signals for Bearing Crack Identification. Sensors 2022, 22, 539. [Google Scholar] [CrossRef]
- Roberts, S.; Osborne, M.; Ebden, M.; Reece, S.; Gibson, N.; Aigrain, S. Gaussian processes for time-series modelling. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20110550. [Google Scholar] [CrossRef]
Specimen Number | Initial Residual Stress/MPa | Specimen Number | Initial Residual Stress/MPa |
---|---|---|---|
1 | −640 | 4 | −672 |
2 | −620 | 5 | −630 |
3 | −620 | 6 | −640 |
Load Cycle/N | Residual Stress/MPa | Load Cycle/N | Residual Stress/MPa |
---|---|---|---|
1 | −635 | 10,000 | −628 |
10 | −634 | 15,000 | −606 |
100 | −632 | 25,000 | −604 |
1000 | −628 | 40,000 | −601 |
Specimen Number | Load Cycle/N | Residual Stress/MPa | Specimen Number | Load Cycle/N | Residual Stress/MPa |
---|---|---|---|---|---|
2 | 8522 | −603 | 5 | 29,828 | −595 |
3 | 12,783 | −600 | 6 | 34,088 | −594 |
4 | 21,305 | −605 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, A.; Zhou, J.; Liang, T. A Gaussian Process State Space Model Fusion Physical Model and Residual Analysis for Fatigue Evaluation. Sensors 2022, 22, 2540. https://doi.org/10.3390/s22072540
Yin A, Zhou J, Liang T. A Gaussian Process State Space Model Fusion Physical Model and Residual Analysis for Fatigue Evaluation. Sensors. 2022; 22(7):2540. https://doi.org/10.3390/s22072540
Chicago/Turabian StyleYin, Aijun, Junlin Zhou, and Tianyou Liang. 2022. "A Gaussian Process State Space Model Fusion Physical Model and Residual Analysis for Fatigue Evaluation" Sensors 22, no. 7: 2540. https://doi.org/10.3390/s22072540
APA StyleYin, A., Zhou, J., & Liang, T. (2022). A Gaussian Process State Space Model Fusion Physical Model and Residual Analysis for Fatigue Evaluation. Sensors, 22(7), 2540. https://doi.org/10.3390/s22072540