Advancing towards Ubiquitous EEG, Correlation of In-Ear EEG with Forehead EEG
Abstract
:1. Introduction
2. Materials and Methods
2.1. Earpiece Production and Preparation
2.2. Participants
2.3. Electrode Placement Nomenclature
2.4. Experimental Setup
2.4.1. Experimental Procedure
2.4.2. Electrode Skin Contact Impedance
2.4.3. EEG Recording
2.5. Data Analysis
- Restructuring of raw data: First, the data were reorganized to include session-specific information, such as electrode locations corresponding to channels, left/right ear information and stimulation conditions, to make further processing steps more efficient. This produced session-specific information which was stored in unique labels corresponding to the data.
- Filtering: The labeled restructured continuous raw data were then frequency filtered using a 4th order finite impulse response filter (FIR) with a bandpass of 1 to 40 Hz. The specified bandpass filter level ensured that power line interference and Ac drift is eliminated.
- The filtered data were then divided into epochs. Each epoch was composed of 5-s windows with a 4-s overlap in frequency analysis to allow for more in-depth investigation (overlapping sliding windows).
- Epoch cleaning: Each epoch was then cleaned through an automatic artifact rejection function employing different artifact criteria. If an epoch was a simple flat line, it was classified as bad. If the signal amplitude exceeded the threshold of −60 µV to +60 µV, the epoch was classified as an artifact and was labeled as bad. The threshold was chosen through EEG expert manual selection of a threshold for filtered data in 5-s windows. The threshold was determined with the intention to contain a large amount of good data yet to exclude all data with external influence or artifacts.
2.5.1. Power Spectral Density
2.5.2. Signal Quality (SNR)
2.5.3. Alpha Bandpower Correlation
3. Results and Discussion
3.1. Electrode Skin Contact Impedance
3.2. Power Spectral Density (PSD)
3.3. Signal Quality
3.4. Alpha Bandpower Correlation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mikkelsen, K.B.; Tabar, Y.R.; Kappel, S.L.; Christensen, C.B.; Toft, H.O.; Hemmsen, M.C.; Rank, M.L.; Otto, M.; Kidmose, P. Accurate whole-night sleep monitoring with dry-contact ear-EEG. Sci. Rep. 2019, 9, 16824. [Google Scholar] [CrossRef]
- Kalas, M.S.; Momin, B.F. Stress Detection and Reduction using EEG Signals. In Proceedings of the 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, 3–5 March 2016. [Google Scholar]
- Marketwatch PressRelease. Brain Monitoring Devices Global Market: Global Industry, Trends, Market Size, Forecast up to 2030. Available online: https://www.marketwatch.com/press-release/brain-monitoring-devices-global-market-global-industry-trends-market-size-forecast-up-to-2030-2022-01-06 (accessed on 7 January 2022).
- The Insight Partners. EEG Devices Market to Grow at a CAGR of 7.5% to Reach US $1699.52 Million from 2021 to 2028. 2021. Available online: https://www.theinsightpartners.com/reports/eeg-devices-market/ (accessed on 7 January 2022).
- Yao, S.; Zhu, Y. Nanomaterial-Enabled Dry Electrodes for Electrophysiological Sensing: A Review. JOM 2016, 68, 1145–1155. [Google Scholar] [CrossRef]
- InteraXon Muse Homepage. Muse Headband Homepage. 2022. Available online: https://choosemuse.com/ (accessed on 7 January 2022).
- Dreem Homepage. 2022. Available online: https://dreem.com (accessed on 7 January 2022).
- NPR Page. 2022. Available online: https://www.npr.org/sections/health-shots/2014/03/13/289787263/electronic-headband-prevents-migraines-with-tiny-jolts?t=1634526717429 (accessed on 7 January 2022).
- Neurosky Homepage. 2022. Available online: http://neurosky.com/ (accessed on 7 January 2022).
- Mikkelsen, K.B.; Kappel, S.L.; Mandic, D.P.; Kidmose, P. EEG Recorded from the Ear: Characterizing the Ear-EEG Method. Front. Neurosci. 2015, 9, 438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Looney, D.; Park, C.; Kidmose, P.; Rank, M.L.; Ungstrup, M.; Rosenkranz, K.; Mandic, D.P. An in-the-ear platform for recording electroencephalogram. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; Volume 2011, pp. 6882–6885. [Google Scholar] [CrossRef]
- Dong, H.; Matthews, P.M.; Guo, Y. A new soft material based in-the-ear EEG recording technique. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; Volume 2016, pp. 5709–5712. [Google Scholar] [CrossRef]
- Wang, Y.-T.; Nakanishi, M.; Kappel, S.L.; Kidmose, P.; Mandic, D.P.; Wang, Y.; Cheng, C.-K.; Jung, T.-P. Developing an online steady-state visual evoked potential-based brain-computer interface system using EarEEG. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; Volume 2015, pp. 2271–2274. [Google Scholar] [CrossRef]
- Kidmose, P.; Looney, D.; Ungstrup, M.; Rank, M.L.; Mandic, D.P. A Study of Evoked Potentials From Ear-EEG. IEEE Trans. Biomed. Eng. 2013, 60, 2824–2830. [Google Scholar] [CrossRef]
- Zibrandtsen, I.; Kidmose, P.; Otto, M.; Ibsen, J.; Kjaer, T. Case comparison of sleep features from ear-EEG and scalp-EEG. Sleep Sci. 2016, 9, 69–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, M.; Tian, C.; Cao, R.; Wang, B.; Niu, Y.; Hu, T.; Guo, H.; Xiang, J. Epileptic Seizure Detection Based on EEG Signals and CNN. Front. Neuroinform. 2018, 12, 95. [Google Scholar] [CrossRef] [Green Version]
- Lagopoulos, J.; Xu, J.; Rasmussen, I.; Vik, A.; Malhi, G.S.; Eliassen, C.F.; Arntsen, I.E.; Sæther, J.G.; Hollup, S.; Holen, A.; et al. Increased Theta and Alpha EEG Activity During Nondirective Meditation. J. Altern. Complement. Med. 2009, 15, 1187–1192. [Google Scholar] [CrossRef]
- Lam, A.D.; Sarkis, R.A.; Pellerin, K.R.; Jing, J.; Dworetzky, B.A.; Hoch, D.B.; Jacobs, C.S.; Lee, J.W.; Weisholtz, D.S.; Zepeda, R.; et al. Association of epileptiform abnormalities and seizures in Alzheimer disease. Neurology 2020, 95, e2259–e2270. [Google Scholar] [CrossRef]
- Kirschfeld, K. The physical basis of alpha waves in the electroencephalogram and the origin of the “Berger effect”. Biol. Cybern. 2005, 92, 177–185. [Google Scholar] [CrossRef]
- Debener, S.; Emkes, R.; De Vos, M.; Bleichner, M. Unobtrusive ambulatory EEG using a smartphone and flexible printed electrodes around the ear. Sci. Rep. 2015, 5, 16743. [Google Scholar] [CrossRef] [Green Version]
- Kappel, S.L.; Rank, M.L.; Toft, H.O.; Andersen, M.; Kidmose, P. Dry-Contact Electrode Ear-EEG. IEEE Trans. Biomed. Eng. 2019, 66, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Asadi, F.; Ghalam, K.B. Detection of Autism with Electroencephalographic Signals and Comparison with Healthy People Using Genetic Algorithm Network. Signal Process. Renew. Energy 2019, 3, 35–48. [Google Scholar]
- Lee, J.H.; Gamper, H.; Tashev, I.; Dong, S.; Ma, S.; Remaley, J.; Holbery, J.D.; Yoon, S.H. Stress Monitoring using Multimodal Bio-sensing Headset. In Proceedings of the Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020. [Google Scholar] [CrossRef]
- Foxe, J.J.; Snyder, A.C. The Role of Alpha-Band Brain Oscillations as a Sensory Suppression Mechanism during Selective Attention. Front. Psychol. 2011, 2, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klimesch, W. Full-length review EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef]
- Başar, E. A review of alpha activity in integrative brain function: Fundamental physiology, sensory coding, cognition and pathology. Int. J. Psychophysiol. 2012, 86, 1–24. [Google Scholar] [CrossRef]
- Ambu Sensors Product Page. 2022. Available online: https://www.ambu.com/cardiology/ecg-electrodes/product/ambu-bluesensor-l (accessed on 7 January 2022).
- Paul, A.; Deiss, S.R.; Tourtelotte, D.; Kleffner, M.; Zhang, T.; Cauwenberghs, G. Electrode-Skin Impedance Characterization of In-Ear Electrophysiology Accounting for Cerumen and Electrodermal Response. In Proceedings of the International IEEE/EMBS Conference on Neural Engineering (NER), San Francisco, CA, USA, 20–23 March 2019; pp. 855–858. [Google Scholar] [CrossRef]
- Frey, J. Comparison of a consumer grade EEG amplifier with medical grade equipment in BCI applications. In Proceedings of the International BCI meeting, Asilomar, CA, USA, 30 May–3 June 2016. [Google Scholar]
- Sawangjai, P.; Hompoonsup, S.; Leelaarporn, P.; Kongwudhikunakorn, S.; Wilaiprasitporn, T. Consumer Grade EEG Measuring Sensors as Research Tools: A Review. IEEE Sens. J. 2020, 20, 3996–4024. [Google Scholar] [CrossRef]
- EEG Notebooks. 2022. Available online: https://github.com/NeuroTechX/eeg-notebooks (accessed on 7 January 2022).
- The MathWorks Inc. MATLAB. R2019a; Mathworks Inc.: Sherborn, MA, USA, 2019. [Google Scholar]
- Tautan, A.-M. Signal Quality in Dry Electrode EEG and the Relation to Skin-electrode Contact Impedance Magnitude. In Proceedings of the International Conference on Biomedical Electronics and Devices, Angers, France, 3–6 March 2014; pp. 12–22. [Google Scholar] [CrossRef] [Green Version]
- Halgren, M.; Ulbert, I.; Bastuji, H.; Fabó, D.; Erőss, L.; Rey, M.; Devinsky, O.; Doyle, W.K.; Mak-McCully, R.; Halgren, E.; et al. The generation and propagation of the human alpha rhythm. Proc. Natl. Acad. Sci. USA 2019, 116, 23772–23782. [Google Scholar] [CrossRef]
- McAdams, E. Bioelectrodes. In Encyclopedia of Medical Devices and Instrumentation; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Edelberg, R. Relation of electrical properties of skin to structure and physiologic state. J. Investig. Dermatol. 1977, 69, 324–327. [Google Scholar] [CrossRef] [Green Version]
- Kappel, S.L.; Kidmose, P. Study of impedance spectra for dry and wet EarEEG electrodes. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Milan, Italy, 25–29 August 2015; Volume 2015, pp. 3161–3164. [Google Scholar] [CrossRef]
- Goverdovsky, V.; Looney, D.; Kidmose, P.; Mandic, D.P. In-Ear EEG From Viscoelastic Generic Earpieces: Robust and Unobtrusive 24/7 Monitoring. IEEE Sensors J. 2016, 16, 271–277. [Google Scholar] [CrossRef]
- Mandekar, S.; Jentsch, L.; Lutz, D.K.; Behbahani, D.M.; Melnykowycz, M. Earable Design Analysis for Sleep EEG Measurements. In Proceedings of the Adjunct Proceedings of the 2021 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2021 ACM International Symposium on Wearable Computers, Virtual, 21–26 September 2021; pp. 171–175. [Google Scholar] [CrossRef]
- Spinelli, E.; Haberman, M. Insulating electrodes: A review on biopotential front ends for dielectric skin-electrode interfaces. Physiol. Meas. 2010, 31, S183–S198. [Google Scholar] [CrossRef]
- Barry, R.J.; Clarke, A.R.; Johnstone, S.; Magee, C.; Rushby, J. EEG differences between eyes-closed and eyes-open resting conditions. Clin. Neurophysiol. 2007, 118, 2765–2773. [Google Scholar] [CrossRef] [PubMed]
- Harmony, T.; Fernández, T.; Silva-Pereyra, J.; Bernal, J.; Díaz-Comas, L.; Reyes, A.; Marosi, E.; Rodríguez, M.; Rodríguez, M. EEG delta activity: An indicator of attention to internal processing during performance of mental tasks. Int. J. Psychophysiol. 1996, 24, 161–171. [Google Scholar] [CrossRef]
Device | Electrode Type | Electrode Locations | Applications |
---|---|---|---|
InteraXon Muse | Metal | 4 channels, AF7, AF8, TP9, TP10 | Sleep tracking and meditation |
Macrotellect BrainLink | Metal | 3 channels, FP1, FPz, FP2 | Meditation |
Neurosky Mindwave | Metal | 1 channel, AFz | Attention, meditation |
Emotiv Insight | Semi-dry polymer electrodes | 5 channels, AF3, AF4, T7, T8, Pz | Meditation and research |
BrainCo FocusCalm | Metal | 3 channels, AF7, AF8, FPz | Meditation |
Parameters | Values |
---|---|
CMRR | 110 dB |
DC input impedance | 500 MΩ |
Sampling rate ADC resolution | 250 Hz 24 bits |
Mean (kΩ) | Standard Deviation (kΩ) | |
---|---|---|
E | 24.9 | 20.6 |
J | 20.8 | 16.1 |
H | 21.6 | 16.3 |
Mean | 22.4 | 17.7 |
Delta (δ) | Alpha (α) | |||
---|---|---|---|---|
T Value | p Value | T Value | p Value | |
ELE | 1.656 | 0.710 | 3.652 | 0.004 |
ELJ | 1.612 | 0.750 | 4.233 | 0.002 |
ELH | 2.945 | 0.011 | 3.897 | 0.003 |
Fp1 | 3.314 | 0.006 | 4.061 | 0.002 |
ERE | 1.876 | 0.051 | 3.208 | 0.007 |
ERJ | 1.655 | 0.071 | 3.267 | 0.007 |
ERH | 2.073 | 0.038 | 3.271 | 0.007 |
Fp2 | 3.046 | 0.009 | 4.159 | 0.002 |
Left Ear | Right Ear | |||||
---|---|---|---|---|---|---|
Locations | Mean (%) | Standard Deviation | Locations | Mean (%) | Standard Deviation | |
Eyes Open | ELE | 98.45 | 1.46 | ERE | 99.47 | 1.10 |
ELJ | 98.56 | 2.12 | ERJ | 99.17 | 1.55 | |
ELH | 99.13 | 1.37 | ERH | 98.79 | 1.68 | |
Fp1 | 46.36 | 40.73 | Fp2 | 46.52 | 42.19 | |
Eyes Closed | ELE | 99.62 | 1.07 | ERE | 99.62 | 1.07 |
ELJ | 99.05 | 1.80 | ERJ | 100 | 0 | |
ELH | 99.62 | 1.07 | ERH | 99.09 | 1.71 | |
Fp1 | 78.67 | 24.83 | Fp2 | 77.05 | 27.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandekar, S.; Holland, A.; Thielen, M.; Behbahani, M.; Melnykowycz, M. Advancing towards Ubiquitous EEG, Correlation of In-Ear EEG with Forehead EEG. Sensors 2022, 22, 1568. https://doi.org/10.3390/s22041568
Mandekar S, Holland A, Thielen M, Behbahani M, Melnykowycz M. Advancing towards Ubiquitous EEG, Correlation of In-Ear EEG with Forehead EEG. Sensors. 2022; 22(4):1568. https://doi.org/10.3390/s22041568
Chicago/Turabian StyleMandekar, Swati, Abigail Holland, Moritz Thielen, Mehdi Behbahani, and Mark Melnykowycz. 2022. "Advancing towards Ubiquitous EEG, Correlation of In-Ear EEG with Forehead EEG" Sensors 22, no. 4: 1568. https://doi.org/10.3390/s22041568