Evaluation of Isomotive Insulator-Based Dielectrophoretic Device by Measuring the Particle Velocity
Abstract
:1. Introduction
2. Theory and Device Designing
2.1. Particle Velocity Induced by the Dielectrophoretic Force
2.2. Design of the Proposal Isomotive iDEP Device
2.2.1. Analysis of the Device Having Parallel Insulators
2.2.2. Design of Isomotive iDEP Creek-Gap Device
3. Materials and Methods
3.1. Fabrication of the Isomotive iDEP Device
3.1.1. Patterning of the Electrodes with Conventional Process
3.1.2. Patterning of the Insulators with Backside Exposure
3.2. Measurement of the Particle Velocity and Device Impedance
4. Results and Discussion
4.1. Distribution of the Particle Velocity
4.2. Particle Velocity against Applied Frequency
4.3. Impedance Measurement of the Proposed Device
- RE_S and RE_L are negligible: RE_S and RE_L are much smaller than Rm;
- REDL_S and REDL_L are open-circuited: assuming that there is no charge movement in the EDL.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pohl, H.A. The Motion and Precipitation of Suspensoids in Divergent Electric Fields. J. Appl. Phys. 1951, 22, 869–871. [Google Scholar] [CrossRef]
- Pohl, H.A.; Crane, J.S. Dielectrophoresis of Cells. Biophys. J. 1971, 11, 711–727. [Google Scholar] [CrossRef] [Green Version]
- Jones, T.B.; Kallio, G.A. Dielectrophoretic Levitation of Spheres and Shells. J. Electrost. 1979, 6, 207–224. [Google Scholar] [CrossRef]
- Imasato, H.; Yamakawa, T. Measurement of Dielectrophoretic Force by Employing Controllable Gravitational Force. J. Electrophor. 2008, 52, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gagnon, Z.; Gordon, J.; Sengupta, S.; Chang, H.-C. Bovine Red Blood Cell Starvation Age Discrimination through a Glutaraldehyde-Amplified Dielectrophoretic Approach with Buffer Selection and Membrane Cross-Linking. Electrophoresis 2008, 29, 2272–2279. [Google Scholar] [CrossRef]
- Watarai, H.; Sakamoto, T.; Tsukahara, S. In Situ Measurement of Dielectrophoretic Mobility of Single Polystyrene Microparticles. Langmuir 1997, 13, 2417–2420. [Google Scholar] [CrossRef]
- Wang, X.-B.; Yang, J.; Huang, Y.; Vykoukal, J.; Becker, F.F.; Gascoyne, P.R.C. Cell Separation by Dielectrophoretic Field-Flow-Fractionation. Anal. Chem. 2000, 72, 832–839. [Google Scholar] [CrossRef] [Green Version]
- Tada, S.; Hayashi, M.; Eguchi, M.; Tsukamoto, A. High-Throughput Separation of Cells by Dielectrophoresis Enhanced with 3D Gradient AC Electric Field. Biomicrofluidics 2017, 11, 064110. [Google Scholar] [CrossRef]
- Henslee, E.A.; Sano, M.B.; Rojas, A.D.; Schmelz, E.M.; Davalos, R.V. Selective Concentration of Human Cancer Cells Using Contactless Dielectrophoresis. Electrophoresis 2011, 32, 2523–2529. [Google Scholar] [CrossRef]
- Nakano, M.; Ding, Z.; Matsuda, K.; Xu, J.; Inaba, M.; Suehiro, J. Simple Microfluidic Device for Detecting the Negative Dielectrophoresis of DNA Labeled Microbeads. Biomicrofluidics 2019, 13, 064109. [Google Scholar] [CrossRef]
- Graf, T.; Stadtfeld, M. Heterogeneity of Embryonic and Adult Stem Cells. Cell Stem Cell 2008, 3, 480–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Bodovitz, S. Single Cell Analysis: The New Frontier in ‘Omics. ’ Trends Biotechnol. 2010, 28, 281–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, T.; Green, N.G.; Morgan, H. Analytical and numerical modeling methods for impedance analysis of single cells on-chip. Nano 2008, 03, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Brackenbury, W.J. Membrane Potential and Cancer Progression. Front. Physiol. 2013, 4, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, Y.J.; Lin, Y.Y.; Lei, U.; Wu, M.S.; Yang, P.C. Measurement of the Clausius-Mossotti Factor of Generalized Dielectrophoresis. Appl. Phys. Lett. 2014, 104, 083701. [Google Scholar] [CrossRef]
- Wu, L.; Lanry Yung, L.-Y.; Lim, K.-M. Dielectrophoretic Capture Voltage Spectrum for Measurement of Dielectric Properties and Separation of Cancer Cells. Biomicrofluidics 2012, 6, 014113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, Y.J.; Lei, U.; Chen, K.Y.; Lin, Y.Y.; Huang, C.C.; Wu, M.S.; Yang, P.C. Derivation of the Cell Dielectric Properties Based on Clausius-Mossotti Factor. Appl. Phys. Lett. 2014, 104, 113702. [Google Scholar] [CrossRef]
- Lin, Y.-Y.; Lo, Y.-J.; Lei, U. Measurement of the Imaginary Part of the Clausius-Mossotti Factor of Particle/Cell via Dual Frequency Electrorotation. Micromachines 2020, 11, 329. [Google Scholar] [CrossRef] [Green Version]
- Lo, Y.; Lei, U. Measurement of the Real Part of the Clausius–Mossotti Factor of Dielectrophoresis for Brownian Particles. Electrophoresis 2020, 41, 137–147. [Google Scholar] [CrossRef]
- Han, F.; Wang, Y.; Sims, C.E.; Bachman, M.; Chang, R.; Li, G.P.; Allbritton, N.L. Fast Electrical Lysis of Cells for Capillary Electrophoresis. Anal. Chem. 2003, 75, 3688–3696. [Google Scholar] [CrossRef]
- Hoettges, K.F.; Henslee, E.A.; Torcal Serrano, R.M.; Jabr, R.I.; Abdallat, R.G.; Beale, A.D.; Waheed, A.; Camelliti, P.; Fry, C.H.; van der Veen, D.R.; et al. Ten–Second Electrophysiology: Evaluation of the 3DEP Platform for High-Speed, High-Accuracy Cell Analysis. Sci. Rep. 2019, 9, 19153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masuda, S.; Washizu, M.; Nanba, T. Novel Method of Cell Fusion in Field Constriction Area in Fluid Integration Circuit. IEEE Trans. Ind. Appl. 1989, 25, 732–737. [Google Scholar] [CrossRef]
- Tada, S.; Eguchi, M.; Okano, K. Insulator-based Dielectrophoresis Combined with the Isomotive AC Electric Field and Applied to Single Cell Analysis. Electrophoresis 2019, 40, 1494–1497. [Google Scholar] [CrossRef] [PubMed]
- Pohl, H.A. Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields (Cambridge Monographs on Physics); Cambridge University Press: Cambridge, UK; New York, NY, USA, 1978; ISBN 978-0-521-21657-9. [Google Scholar]
- Allen, D.J.; Accolla, R.P.; Williams, S.J. Isomotive Dielectrophoresis for Parallel Analysis of Individual Particles. Electrophoresis 2017, 38, 1441–1449. [Google Scholar] [CrossRef]
- Tada, S.; Omi, Y.; Eguchi, M. Analysis of the Dielectrophoretic Properties of Cells Using the Isomotive AC Electric Field. Biomicrofluidics 2018, 12, 044103. [Google Scholar] [CrossRef]
- Pethig, R. Dielectrophoresis: Theory, Methodology and Biological Applications; John Wiley & Sons, Ltd: Chichester, UK, 2017; ISBN 978-1-118-67144-3. [Google Scholar]
- Jones, T.B. Electromechanics of Particles; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2005; pp. 39–42. ISBN 978-0-521-01910-1. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakabayashi, R.; Eguchi, M. Evaluation of Isomotive Insulator-Based Dielectrophoretic Device by Measuring the Particle Velocity. Sensors 2022, 22, 1533. https://doi.org/10.3390/s22041533
Nakabayashi R, Eguchi M. Evaluation of Isomotive Insulator-Based Dielectrophoretic Device by Measuring the Particle Velocity. Sensors. 2022; 22(4):1533. https://doi.org/10.3390/s22041533
Chicago/Turabian StyleNakabayashi, Ryu, and Masanori Eguchi. 2022. "Evaluation of Isomotive Insulator-Based Dielectrophoretic Device by Measuring the Particle Velocity" Sensors 22, no. 4: 1533. https://doi.org/10.3390/s22041533
APA StyleNakabayashi, R., & Eguchi, M. (2022). Evaluation of Isomotive Insulator-Based Dielectrophoretic Device by Measuring the Particle Velocity. Sensors, 22(4), 1533. https://doi.org/10.3390/s22041533