CPT—DMT Correlations on Regional Soils from Croatia
Abstract
:1. Introduction
2. Overview
3. Methods
3.1. The Flat Dilatometer Test (DMT)
3.2. Piezocone Penetration Test (CPT)
3.3. Position and Minimal Distance of CPTu/DMT Pair
4. Investigation Data
5. Results
5.1. Clay-like Soils (ID < 0.6, IC > 2.95)
5.2. Silty-like Soils (0.6 < ID < 1.8, 2.05 < IC < 2.95)
6. Soil Type
7. Discussion
Application of Correlations for Calculating M′DMT
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lunne, T.; Robertson, P.K.; Powell, J.J.M. Cone Penetration Testing in Geotechnical Practice; Spon Press, Taylor & Francis Group: London, UK, 1997; ISBN 041923750X. [Google Scholar]
- Senneset, K.; Sandven, R.; Lunne, T.; By, T.; Amundsen, T. Piezocone Tests in Silty Soils. In Proceedings of the International Symposium on Penetration Testing, ISOPT-1, Orlando, FL, USA, 20–24 March 1988; de Ruiter, J., Ed.; Balkema: Roterdam, The Netherlands, 1988; Volume 2, pp. 955–966. [Google Scholar]
- Tonni, L.; Gottardi, G. Interpretation of Piezocone Tests in Venetian Silty Soils and the Issue of Partial Drainage. In Proceedings of the Deep Foundations and Geotechnical In Situ Testing; GeoShanghai International Conference 2010, Shanghai, China, 3–5 June 2010; pp. 367–374. [Google Scholar]
- Senneset, K.; Sandven, R.S.; Janbu, N. Evaluation of Soil Parameters from Piezocone Tests; Transportation Research Board: Washington, DC, USA, 1989. [Google Scholar]
- Robertson, P.K. Interpretation of cone penetration tests—A unified approach. Can. Geotech. J. 2009, 46, 1337–1355. [Google Scholar] [CrossRef] [Green Version]
- Tonni, L.; Gottardi, G. Analysis and interpretation of piezocone data on the silty soils of the Venetian lagoon (Treporti test site). Can. Geotech. J. 2011, 48, 616–633. [Google Scholar] [CrossRef]
- Kulhawy, F.H.; Mayne, P.W. Manual of Estimating Soil Properties for Foundation Design; Electric Power Research Institute, EPRI: Paolo Alto, CA, USA, 1990. [Google Scholar]
- Robertson, P.K. CPT-DMT Correlations. J. Geotech. Geoenviron. Eng. 2009, 135, 1762–1771. [Google Scholar] [CrossRef]
- Mayne, P.W.; Liao, T. CPT-DMT interrelationships in piedmont residuum. In Proceedings of the 2nd International Conference on Geophysical and Geotechnical Site Characterization, ISC-2, Porto, Portugal, 19–22 September 2004; pp. 345–350. [Google Scholar]
- Robertson, P.K. Soil Behavior Type using the DMT. In Proceedings of the 3rd International Conference on the Flat Dilatometer, Rome, Italy, 14–16 June 2015. [Google Scholar]
- Marchetti, S. In-Situ tests by flat dilatometer. J. Geotech. Eng. Div. ASCE 1980, 106, 299–321. [Google Scholar] [CrossRef]
- Look, B.G. Handbook of Geotechnical Investigation and Design Tables, 2nd ed.; Taylor & Francis: London, UK, 2014; ISBN 978-1-138-00139-8. [Google Scholar]
- Marchetti, S. Incorporating the Stress History Parameter KD of DMT into the Liquefaction Correlations in Clean Uncemented Sands. J. Geotech. Geoenviron. Eng. 2016, 142, 04015072. [Google Scholar] [CrossRef] [Green Version]
- Godlewski, T.; Wszędyrówny-Nast, M. Correlations of Regional Geotechnical Parameters on the Basis of CPTU and DMT Tests. In Proceedings of the 13th Baltic Sea Geotechnical Conference, Vilnius, Lithuania, 22–24 September 2016; Volume 2, pp. 22–27. [Google Scholar]
- Maček, M.; Logar, J.; Pulko, B. Comparative evaluation of soil properties using CPT and DMT in-situ tests. Geomech. Tunn. 2019, 12, 318–327. [Google Scholar] [CrossRef]
- Igoe, D.; Gavin, K. Characterization of the Blessington sand geotechnical test site. AIMS Geosci. 2019, 5, 145–162. [Google Scholar] [CrossRef]
- Sokolić, I.; Skazlić, Ž.; Szavitz-Nossan, A. Odreivanje svojstava naslaga mekih glina pokusom CPTU. Građevinar 2009, 61, 417–427. [Google Scholar]
- Mayne, P.W. Evaluating effective stress parameters and undrained shear strengths of soft-firm clays from CPTu and DMT. In Proceedings of the 5th International Conference on Geotechnical and Geophysical Site Characterisation, ISC 2016, Queensland, Australia, 5–9 September 2016. [Google Scholar]
- Rabarijoely, S.; Lech, M.; Bajda, M. Determination of Relative Density and Degree of Saturation in Mineral Soils Based on In Situ Tests. Materials 2021, 14, 6963. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, D.; Marchetti, S. Flat Dilatometer (DMT). Some Recent Advances. Procedia Eng. 2016, 158, 428–433. [Google Scholar] [CrossRef]
- Marchetti, S.; Monaco, P.; Totani, G.; Calabrese, M. The DMT in soil investigations. A report by ISSMGE TC 16. In Proceedings of the International Conference on In Situ Measurements of Soil Properties and Case Histories, Bali, Indonesia, 21–24 May 2001; pp. 95–132. [Google Scholar]
- Mayne, P.W. Interrelationships of DMT and CPT readings in soft clays. In Proceedings of the 2nd International Conference on the Flat Dilatometer, Washington, DC, USA, 2–5 April 2006; pp. 231–236. [Google Scholar]
- Strelec, S.; Mesec, J.; Grabar, K.; Jug, J. Implementation of in-situ and geophysical investigation methods (ERT & MASW) with the purpose to determine 2D profile of landslide. Acta Montan. Slovaca 2017, 22, 345–358. [Google Scholar]
- Monaco, P.; Totani, G.; Calabrese, M. DMT-predicted vs observed settlements: A review of the available experience. In Proceedings of the 2nd International Conference on the Flat Dilatometer, Washington, DC, USA, 2–5 April 2006; pp. 244–252. [Google Scholar]
- Mayne, P.W.; Schneider, J. Evaluating axial drilled shaft response by seismic cone. Found. Gr. Improv. 2001, GSP 113, 655–669. [Google Scholar]
- McNulty, E.G.; Harney, M.D. Comparison of DMT- and CPT-Correlated Constrained Moduli in Clayey and Silty Sands. In From Soil Behavior Fundamentals to Innovations in Geotechnical Engineering; American Society of Civil Engineers: Reston, VA, USA, 2014; pp. 400–409. [Google Scholar]
- Robertson, P.K. Soil classification using cone penetration tests—A unified approach. Can. Geotech. J. 1990, 27, 151–158. [Google Scholar] [CrossRef]
- Robertson, P.K.; Wride, C. (Fear) Evaluating cyclic liquefaction potential using the cone penetration test. Can. Geotech. J. 1998, 35, 442–459. [Google Scholar] [CrossRef]
- Robertson, P.K.; Cabal, K.L. Guide to Cone Penetration Testing for Geotechnical Engineering, 6th ed.; Gregg Drilling & Testing, Inc.: Signal Hill, CA, USA, 2015. [Google Scholar]
- Kavur, B.; Dodigovic, F.; Jug, J.; Strelec, S. The Interpretation of CPTu, PMT, SPT and Cross-Hole Tests in Stiff Clay. IOP Conf. Ser. Earth Environ. Sci. 2019, 221, 012009. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, Z.; Mayne, P. Evaluating Rigidity Index, OCR, and su from Dilatometer Data in Soft to Firm Clays. In Proceedings of the Geotechnical Engineering in the XXI Century: Lessons Learned and Future Challenge, Cancun, Mexico, 17–20 November 2019; Lopez-Acosta, N.P., Ed.; IOS Press: Cancun, Mexico, 2019; pp. 286–293. [Google Scholar]
“Icone” Digital Cone | Technical Characteristics | Maximum Range |
---|---|---|
Resolution | 24 bits (Ix/Iy 16 bits) | |
Cone tip area | 10 cm2 | |
Available parameters | , Ix/Iy | |
Memo function | 16 Mbit (8 hrs. CPT operation) | |
Real-time data processing | ||
Cone resistance () | 75 MPa | 150 MPa |
Minimal accuracy for Class 2 | 100 kPa or 5% | |
Sleeve friction () | 1 MPa | 1.5 MPa |
Minimal accuracy for Class 2 | 15 kPa od 3% | |
Pore water pressure (u) | 2 MPa | 3 MPa |
Minimal accuracy for Class 2 | 25 kPa od 2% | |
Inclination (Ix/Iy) | 20° | 25° |
Minimal accuracy for Class 2 | 2° |
No. | Site Name | Soil Type | Reached Depth (m) | Parameter Range (DMT) | Parameter Range (DMT) | Range (DMT) | |||
---|---|---|---|---|---|---|---|---|---|
1 | Dugo Selo | soft clays to soft silty-clay and silts | 0–15.6 | 0.1–1.4 | (s = 0.26) | 3.2–10 | (s = 1.50) | 6–470 | (s = 76) |
2 | Petrovsko | silts to silty sands | 0–6.8 | 0.6–2.6 | (s = 0.48) | 2.0–13 | (s = 1.30) | 64–990 | (s = 110) |
3 | Bedekovčina | clayey silts to silty sands | 0–9.6 | 0.4–3.6 | (s = 0.61) | 2.4–22 | (s = 4.30) | 84–776 | (s = 110) |
4 | Kalinovac | clayey silts to silty sand | 0–7.2 | 0.4–2.0 | (s = 0.66) | 2.9–19 | (s = 4.20) | 52–648 | (s = 132) |
5 | Krivaja | silty clays to silty sands | 0–9.2 | 0.3–2.3 | (s = 0.49) | 1.7–14 | (s = 4.20) | 26–970 | (s = 142) |
6 | Samarica | soft clays to silts | 0–10 | 0.25–1.0 | (s = 0.20) | 1.5–14 | (s = 3.40) | 5–316 | (s = 74) |
7 | Orehovčak | silts to silty sands | 0–6.6 | 0.75–3.0 | (s = 1.22) | 1.4–14 | (s = 2.80) | 78–1441 | (s = 322) |
8 | Ploče | soft marine clays to silty sands | 5.6–16 | 0.2–3.2 | (s = 0.90) | 1.5–10 | (s = 1.60) | 21–565 | (s = 149) |
No. | Site Name | Soil Type | Reached Depth (m) | Parameter Range (CPT) | Parameter Range (CPT) | ||
---|---|---|---|---|---|---|---|
1 | Dugo Selo | soft clays to soft silty-clay and silts | 0–15.6 | 9–82 | (s = 15) | 2.6–3.1 | (s = 0.17) |
2 | Petrovsko | silts to silty sands | 0–6.8 | 12–187 | (s = 20) | 2.1–3.2 | (s = 0.21) |
3 | Bedekovčina | clayey silts to silty sands | 0–9.6 | 18–134 | (s = 20) | 2.3–3.2 | (s = 0.14) |
4 | Kalinovac | clayey silts to silty sand | 0–7.2 | 2–67 | (s = 23) | 1.8–3.9 | (s = 0.52) |
5 | Krivaja | silty clays to silty sands | 0–9.2 | 6–72 | (s = 14) | 2.5–3.6 | (s = 0.27) |
6 | Samarica | soft clays to silts | 0–10 | 2–52 | (s = 13) | 2.4–4.0 | (s = 0.38) |
7 | Orehovčak | silts to silty sands | 0–6.6 | 5–226 | (s = 47) | 1.6–3.3 | (s = 0.35) |
8 | Ploče | soft marine clays to silty sands | 5.6–16 | 4–151 | (s = 33) | 1.4–3.2 | (s = 0.49) |
Soil Type | Parameter | Regression |
---|---|---|
Clay and clays mixtures | ||
Clay | ||
Silty clay | ||
Silt and silty mixtures | ||
Clayey silt | ||
Silt | ||
Sandy silt | ||
Silty sand | ||
All soils |
Conditions | Relationship for | Notes |
---|---|---|
clay soils | ||
clean Sands | ||
silts to silty sands | ||
Conditions | Relationship for | Notes | |
---|---|---|---|
fine-grained soil (soft clay) | |||
stiff fine-grained soil | |||
coarse-grained soils |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grabar, K.; Strelec, S.; Špiranec, M.; Dodigović, F. CPT—DMT Correlations on Regional Soils from Croatia. Sensors 2022, 22, 934. https://doi.org/10.3390/s22030934
Grabar K, Strelec S, Špiranec M, Dodigović F. CPT—DMT Correlations on Regional Soils from Croatia. Sensors. 2022; 22(3):934. https://doi.org/10.3390/s22030934
Chicago/Turabian StyleGrabar, Kristijan, Stjepan Strelec, Miljenko Špiranec, and Filip Dodigović. 2022. "CPT—DMT Correlations on Regional Soils from Croatia" Sensors 22, no. 3: 934. https://doi.org/10.3390/s22030934
APA StyleGrabar, K., Strelec, S., Špiranec, M., & Dodigović, F. (2022). CPT—DMT Correlations on Regional Soils from Croatia. Sensors, 22(3), 934. https://doi.org/10.3390/s22030934