Study of HgCdTe (100) and HgCdTe (111)B Heterostructures Grown by MOCVD and Their Potential Application to APDs Operating in the IR Range up to 8 µm
Abstract
:1. Introduction
2. Performance Parameters of HgCdTe APDs
2.1. Impact Ionization
 the ionization time of two types of charges is long which increases the time constant of the device;
 it is random, and hence increases the excess noise of the device;
 it can be unstable, thereby causing avalanche breakdown.
2.2. Dark Current
2.3. Avalanche Gain
2.4. Excess Noise
3. Experimental Studies of Dark Current
4. Gain Calculation
5. Comparison of λ ~ 8 μm (230 K) HgCdTe versus SWIR and MWIR APDs
6. Conclusions
 widerbandgap N^{+}type bottom contact layer with a doping level of N_{D} ~ 2 × 10^{17} cm^{−3}. Cd molar composition is much greater (x_{Cd} ~ 0.4) than that of the absorber so that it is also an optical window for the IR radiation. Layer thickness sufficiently large (~9 μm) to perform “mesa” structure etching.
 non intentionally doped νmultiplication region (N_{D} ~ 5 × 10^{14} cm^{−3}) with Cd molar composition slightly greater (x_{Cd} ~ 0.22) than that of the absorber. Layer thickness in the order of 2–2.5 µm to achieve complete depletion after crossing the ionization voltage.
 ptype absorber doped at the level of N_{A} ~ 3 × 10^{15} cm^{−3} with Cd molar composition of x_{Cd} ~ 0.21 to obtain a λ_{cutoff} ~ 8 μm at 230 K. Thickness of about 5 μm optimized for the best compromise between requirements of efficient collection of IR radiation and low thermal generation;
 widerbandgap P^{+}type barrier layer with a doping level of N_{D} ~ 5 × 10^{17} cm^{−3}. Cd molar composition of x_{Cd} ~ 0.31 with a programed dopant and compositional gradient at the absorber side. Layer thickness not less than 0.6 µm so that it does not diffuse during the growth;
 narrow bandgap (x_{Cd} ~ 0.13), heavily doped (N_{D} ~ 3 × 10^{17} cm^{−3}) n^{+}type cap contact layer. Such design should create a tunneling junction between the absorber and cap contact layer.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
 Campbell, J.C. Recent advances in avalanche photodiodes. J. Light. Technol. 2016, 34, 2. [Google Scholar] [CrossRef]
 Singh, A.; Pal, R. Infrared Avalanche Photodiode Detectors. Def. Sci. J. 2017, 67, 159. [Google Scholar] [CrossRef] [Green Version]
 March, S.D.; Jones, A.H.; Campbell, J.C.; Bank, S.R. Multistep staircase avalanche photodiodes with extremely low noise and deterministic amplification. Nat. Photonics 2021, 15, 468–474. [Google Scholar] [CrossRef]
 Beck, J.; Wan, C.; Kinch, M.; Robinson, J.; Mitra, P.; Scritchfield, R.; Ma, F.; Campbell, J. The HgCdTe electron avalanche photodiode. J. Electron. Mater. 2006, 35, 1166–1173. [Google Scholar] [CrossRef]
 Perrais, G.; Gravrand, O.; Baylet, J.; Destefanis, G.; Rothman, J. Gain and Dark Current Characteristics of Planar HgCdTe Avalanche Photo Diodes. J. Electron. Mater. 2007, 36, 963–970. [Google Scholar] [CrossRef]
 Reine, M.; Marciniec, J.; Wong, K.; Parodos, T.; Mullarkey, J.; Lamarre, P.; Tobin, S.; Gustavsen, K.; Williams, G. HgCdTe MWIR BackIlluminated ElectronInitiated Avalanche Photodiode Arrays. J. Electron. Mater. 2007, 36, 1059–1067. [Google Scholar] [CrossRef]
 Beck, J.; Woodall, M.; Scritchfield, R.; Ohlson, M.; Wood, L.; Mitra, P.; Robinson, J. Gated IR imaging with 128x128 HgCdTe electron avalanche photodiode FPA. Proc. SPIE 2007, 6542, 654217. [Google Scholar]
 Rothman, J.; Perrais, G.; Ballet, P.; Mollard, L.; Gout, S.; Chamonal, J.P. Latest Developments of HgCdTe eAPDs at CEA LETIMinatec. J. Electron. Mater. 2008, 37, 1303–1310. [Google Scholar] [CrossRef]
 Beck, J.D.; Wan, C.F.; Kinch, M.A.; Robinson, J.E. MWIR HgCdTe avalanche photodiodes. Proc. SPIE 2001, 188–197. [Google Scholar] [CrossRef]
 Singh, A.; Shukla, A.K.; Pal, R. HgCdTe eavalanche photodiode detector arrays. AIP Adv. 2015, 5, 087172. [Google Scholar] [CrossRef] [Green Version]
 Rothman, J.; de Borniol, E.; Pes, S.; Dumas, A.; Hoareau, B.; Renet, S.; Mathieu, L.; Nicolas, J.A.; Rostaing, J.P.; le Perchec, J.; et al. HgCdTe APDs detector developments for high speed, low photon number and large dynamic range photodetection. Proc. SPIE 2021, 11852, 118520F. [Google Scholar]
 Leveque, G.; Nasser, M.; Bertho, D.; Orsal, B.; Alabedra, R. Ionization energies in CdxHg1xTe avalanche photodiodes. Semicond. Sci. Technol. 1993, 8, 1317–1323. [Google Scholar] [CrossRef]
 Singh, A.; Srivastav, V.; Pal, R. HgCdTe avalanche photodiodes: A review. Opt. Laser Technol. 2011, 43, 1358–1370. [Google Scholar] [CrossRef]
 Brennan, K.F. Physics of Semiconductors; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
 Kinch, M.A. StateoftheArt Infrared Detector Technology; SPIE Press: Bellingham, WA, USA, 2014. [Google Scholar]
 Polla, D.L.; Aggarwal, R.L.; Nelson, D.A.; Shanley, J.F.; Reine, M.B. Hg vacancy related lifetime in Hg0.68Cd0.32Te by optical modulation spectroscopy. Appl. Phys. Lett. 1983, 43, 941–943. [Google Scholar] [CrossRef]
 De Souza, M.E.; Boukerche, M.; Faurie, J.P. Minoritycarrier lifetime in ptype (111)B HgCdTe grown by molecularbeam epitaxy. J. Appl. Phys. 1990, 68, 5195–5199. [Google Scholar] [CrossRef]
 Baker, I.; Maxey, C.; Hipwood, L.; Weller, H.; Thorne, P. Developments in MOVPE HgCdTe arrays for passive and active infrared imaging. Proc. SPIE 2012, 8542, 85421A. [Google Scholar] [CrossRef]
 Blanks, D.K.; Beck, J.D.; Kinch, M.A.; Colombo, L. Bandtoband tunnel processes in HgCdTe: Comparison of experimental and theoretical studies. J. Vac. Sci. Technol. A 1988, 6, 2790. [Google Scholar] [CrossRef]
 Rothman, J.; Mollard, L.; Gout, S.; Bonnefond, L.; Wlassow, J. History dependent impact ionisation theory applied to HgCdTe eAPDs. J. Electron Mater. 2011, 40, 1757–1768. [Google Scholar] [CrossRef]
 Capper, P.; Garland, J. Mercury Cadmium Telluride Growth, Properties and Application; John Wiley and Sons Ltd.: Chichester, UK, 2011; pp. 493–511. [Google Scholar]
 Sah, C.T. Electronic Processes and Excess Currents in GoldDoped Narrow Silicon Junctions. Phys. Rev. 1961, 123, 1594–1612. [Google Scholar] [CrossRef]
 McIntyre, R.J. Multiplication noise in uniform avalanche photodiodes. IEEE Trans. Electron Devices 1966, 13, 164–168. [Google Scholar] [CrossRef]
 Kopytko, M.; Sobieski, J.; Gawron, W.; Kębłowski, A.; Piotrowski, J. Minority carrier lifetime in HgCdTe(100) epilayers and their potential application to background radiation limited MWIR photodiodes. Semicond. Sci. Technol. 2021, 36, 2. [Google Scholar] [CrossRef]
 Ashley, T.; Elliott, C.T. Nonequilibrium mode of operation for infrared detection. Electron. Lett. 1985, 21, 451–452. [Google Scholar] [CrossRef]
 Elliott, C.T. Nonequilibrium modes of operation of narrowgap semiconductor devices. Semicond. Sci. Technol. 1990, 5, S30–S37. [Google Scholar] [CrossRef]
 Rockwell, A.K.; Ren, M.; Woodson, M.; Jones, A.; March, S.D.; Tan, Y.; Yuan, Y.; Sun, Y.; Hool, R.; Maddox, S.J.; et al. Toward deterministic construction of low noise avalanche photodetector materials. Appl. Phys. Lett. 2018, 113, 102106. [Google Scholar] [CrossRef]
 Goh, Y.L.; Ng, J.S.; Tan, C.H.; Ng, W.K.; David, J.P.R. Excess noise measurement in In0.53Ga0.47As. IEEE Photonics Technol. Lett. 2005, 17, 2412–2414. [Google Scholar]
 Ng, J.S.; Tan, C.H.; David, J.P.R.; Hill, G.; Rees, G.J. Field dependence of impact ionization coefficients in In0.53Ga0.47As. IEEE Trans. Electron Devices 2003, 50, 901–905. [Google Scholar] [CrossRef] [Green Version]
 Hwang, S.; Shim, J.; Yoo, K. A 10Gb/s planar InGaAs/InP avalanche photodiode with a thin multiplication layer fabricated by using recessetching and singlediffusion processes. J. Korean Phys. Soc. 2006, 49, 253–260. [Google Scholar]
 Zhao, Y.; He, S. The experimental investigation on dark current for InGaAs–InP avalanche photodiodes. Microelectron. Eng. 2012, 98, 19–23. [Google Scholar] [CrossRef]
 Woodson, M.E.; Ren, M.; Maddox, S.J.; Chen, Y.; Bank, S.R.; Campbell, J.C. Lownoise AlInAsSb avalanche photodiode. Appl. Phys. Lett. 2016, 108, 081102. [Google Scholar] [CrossRef]
 Cook, L.W.; Bulman, G.E.; Stillman, G.E. Electron and hole impact ionization coefficients in InP determined by photomultiplication measurements. Appl. Phys. Lett. 1982, 40, 589–591. [Google Scholar] [CrossRef]
 Li, N.; Sidhu, R.; Li, X.; Ma, F.; Zheng, X.; Wang, S.; Karve, G.; DeMiguel, S.; Holmes, A.L.; Campbell, J.C. InGaAs/InAlAs avalanche photodiode with undepleted absorber. Appl. Phys. Lett. 2003, 82, 2175–2177. [Google Scholar] [CrossRef]
 Yuan, Y.; Zheng, J.; Tan, Y.; Peng, Y.; Rockwell, A.; Bank, S.R.; Ghosh, A.; Campbell, J.C. Temperature dependence of the ionization coefficients of InAlAs and AlGaAs digital alloys. Photonics Res. 2018, 6, 794–799. [Google Scholar] [CrossRef] [Green Version]
 Zheng, X.G.; Hsu, J.; Hurst, J.B.; Li, X.; Wang, S.; Sun, X.; Holmes, A.L.; Campbell, J.C.; Huntington, A.S.; Coldren, L.A. Longwavelength In0.53Ga0.47AsIn0.52Al0.48As largearea avalanche photodiodes and arrays. IEEE J. Quantum Electron. 2004, 40, 1068–1073. [Google Scholar] [CrossRef]
 Lee, S.; Kodati, S.H.; Guo, B.; Jones, A.H.; Schwartz, M.; Winslow, M.; Grein, C.H.; Ronningen, T.J.; Campbell, J.C.; Krishna, S. Low noise Al0.85Ga0.15As0.56Sb0.44 avalanche photodiodes on InP substrates. Appl. Phys. Lett. 2021, 118, 081106. [Google Scholar] [CrossRef]
 Zheng, J.; Yuan, Y.; Tan, Y.; Peng, Y.; Rockwell, A.K.; Bank, S.R.; Ghosh, A.W.; Campbell, J.C. Digital Alloy InAlAs Avalanche Photodiodes. J. Light. Technol. 2018, 36, 3580–3585. [Google Scholar] [CrossRef]
 Yi, X.; Xie, S.; Liang, B.; Lim, L.W.; Cheong, J.S.; Debnath, M.C.; Huffaker, D.L.; Tan, C.H.; David, J.P.R. Extremely low excess noise and high sensitivity AlAs0.56Sb0.44 avalanche photodiodes. Nat. Photonics 2019, 13, 683–686. [Google Scholar] [CrossRef]
 Lee, S.; Winslow, W.; Grein, C.H.; Kodati, S.H.; Jones, A.H.; Fink, D.R.; Das, P.; Hayat, M.M.; Ronningen, T.J.; Campbell, J.C.; et al. Engineering of impact ionization characteristics in In0.53Ga0.47As/Al0.48In0.52As superlattice avalanche photodiodes on InP substrate. Sci. Rep. 2020, 10, 2. [Google Scholar] [CrossRef]
 Kang, Y.; Zadka, M.; Litski, S.; Sarid, G.; Morse, M.; Paniccia, M.J.; Kuo, Y.H.; Bowers, J.; Beling, A.; Liu, H.D.; et al. Epitaxiallygrown Ge/Si avalanche photodiodes for 1.3 μm light detection. Opt. Express 2008, 16, 9365–9371. [Google Scholar] [CrossRef]
 Gravrand, O.; Rothman, J.; Cervera, C.; Baier, N.; Lobre, C.; Zanatta, J.P.; Boulade, O.; Moreau, V.; Fieque, B. HgCdTe Detectors for Space and Science Imaging: General Issues and Latest Achievements. J. Electron. Mater. 2016, 45, 4532–4541. [Google Scholar] [CrossRef]
 Jones, A.H.; March, S.D.; Bank, S.R.; Campbell, J.C. Lownoise hightemperature AlInAsSb/GaSb avalanche photodiodes for 2μm applications. Nat. Photonics 2020, 14, 559–563. [Google Scholar] [CrossRef]
 Kodati, S.H.; Lee, S.; Guo, B.; Jones, A.H.; Schwartz, M.; Winslow, M.; Pfiester, N.A.; Grein, C.H.; Ronningen, T.J.; Campbell, J.C.; et al. AlInAsSb avalanche photodiodes on InP substrates. Appl. Phys. Lett. 2021, 118, 091101. [Google Scholar] [CrossRef]
 Dehzangi, A.; Li, J.; Gautam, L.; Razeghi, M. Avalanche Photodetector Based on InAs/InSb Superlattice. Quantum Rep. 2020, 2, 591–599. [Google Scholar] [CrossRef]
 Li, J.; Dehzangi, A.; Brown, G.; Razeghi, M. Midwavelength infrared avalanche photodetector with AlAsSb/GaSb superlattice. Sci. Rep. 2021, 11, 7104. [Google Scholar] [CrossRef] [PubMed]
 Ghosh, S.; Mallick, S.; Banerjee, K.; Grein, C.; Velicu, S.; Zhao, J.; Silversmith, D.; Rodriguez, J.B.; Plis, E.; Krishna, S. LowNoise MidWavelength Infrared Avalanche Photodiodes. J. Electron. Mater. 2008, 37, 1764–1769. [Google Scholar] [CrossRef]
 Mallick, S.; Banerjee, K.; Ghosh, S.; Plis, E.; Rodriguez, J.B.; Krishna, S.; Grein, C. Ultralow noise midwave infrared InAsGaSb strain layer superlattice avalanche photodiode. Appl. Phys. Lett. 2007, 91, 241111. [Google Scholar] [CrossRef]
 Rothman, J.; Perrais, G.; Destefanis, G.; Baylet, J.; Castelein, P.; Chamonal, J.P. High performance characteristics in pin MW HgCdTe eAPDs. Proc. SPIE 2007, 6542, 654219. [Google Scholar] [CrossRef]
 Li, Q.; Wang, F.; Wang, P.; Zhang, L.; He, J.; Chen, L.; Martyniuk, P.; Rogalski, A.; Chen, X.; Lu, W.; et al. Enhanced Performance of HgCdTe Midwavelength Infrared Electron Avalanche Photodetectors With Guard Ring Designs. IEEE Trans. Electron Devices 2020, 67, 542–546. [Google Scholar] [CrossRef]
Advantages  Disadvantages 



Parameters  (100)  (111)B 

Bandgap energy, E_{g} [eV]  ${E}_{g}\left(x,T\right)=0.302+1.93\mathrm{x}0.81{x}^{2}+0.832{x}^{3}+5.35\times {10}^{4}\left(12x\right)T$  
Intrinsic concentration, n_{i} [cm^{−3}]  $\begin{array}{c}{n}_{i}=\left(5.5853.82x+0.001753T+0.001364xT\right)\\ \times {10}^{14}{E}_{g}^{3/4}{T}^{3/2}\mathrm{exp}\left(\frac{{E}_{g}}{2{k}_{B}T}\right)\end{array}$  
$\mathrm{Static}\text{}\mathrm{dielectric}\text{}\mathrm{constant},\text{}{\epsilon}_{S}$  ${\epsilon}_{s}=20.515.5x+5.7{x}^{2}$  
$\mathrm{High}\mathrm{frequency}\text{}\mathrm{dielectric}\text{}\mathrm{constant},\text{}{\epsilon}_{\infty}$  ${\epsilon}_{\infty}=15.215.6x+8.2{x}^{2}$  
Cd composition in absorption region, x_{Abs}  0.213  0.216 
Doping in absorption region, N_{A} [cm^{−3}]  3 × 10^{15}  2 × 10^{16} 
Absorber thickness, d_{Abs} [μm]  5.1  5.9 
Trap concentration, N_{T} [cm^{−3}]  2.5 × 10^{14}  1 × 10^{15} 
Trap ionisation energy, E_{T}  0.85 × E_{g}  0.85 × E_{g} 
Trap capture coefficient, γ = σv_{yh} [cm^{3} s^{−1}]  3 × 10^{–8}  1.5 × 10^{–8} 
SRH carrier lifetime, τ_{SRH} [ns]  135  66 
Electron effective mass$,\text{}{m}_{e}^{\ast}/{m}_{0}$  0.071 × E_{g}  0.071 × E_{g} 
$\mathrm{Hole}\text{}\mathrm{effective}\text{}\mathrm{mass},\text{}{m}_{hh}^{\ast}/{m}_{0}$  0.65  0.65 
Overlap matrix F_{1}F_{2}  0.15  0.2 
Operating temperature, T [K]  230  230 
IR Range  Material  Maximum M  k  F(M) @ M = 10  J_{DARK}(A/cm^{2})@M = 10 

SWIR λ = 1.5 μm, T = 125 K, T = 300 K  InGaAs [27,28,29]  14  03–0.5  4.33–5.93  0.94 × 10^{−3} 
InGaAs/InP [30,31,32,33] SACM  200  0.4–0.5  5.14–5.95  5.1 × 10^{−6}–8 × 10^{−4}  
InGaAs/InAlAs [34,35,36] SACM  200  0.15  3.11–3.52  3.2 × 10^{−4}–2.1 × 10^{−3}  
AlGaAsSb [37] PIN  42  0–0.01  1.9–1.98  1.5 × 10^{−4}  
DA InAlAs [38] PIN  24  0.01  <2  1.1 × 10^{−2}  
AlAsSb [39] PIN  37  0.005  1.96  5.7 × 10^{−2}  
AlGaInAs [40] PIN  25  0–0.22  <2  0.26  
Ge/Si [41] SACM  24  0.02  2  0.33  
HgCdTe [42] PIN  >100  0  1  >3 × 10^{−4} (125 K)  
AlInAsSb/AlInAsSb [43] SACM  50  0.01  2  4.6 × 10^{−3}  
InGaAs/AlInAsSb [44] SACM  20  0.018  1.99  5.5 × 10^{−5}  
MWIR λ = 4.6 μm, T = 150 K  InAs/InSb SL [45] PIN  6 (6.5 V, 150 K)  0.27 ^{Exp}  2.95  5 (M = 6, 150 K) 
MWIR λ = 5 μm, T = 200 K  AlAsSb/GaSb SL [46] SAM  29 (14.7 V, 200 K) 121 (150 K)  0.097 ^{Exp} (200 K)  4.58  0.15 
MWIR λ = 4.9 μm, T = 77 K  HgCdTe on Si substrate [47] PIN  1250 (10 V, 77 K) 200 (120 K)  <0.001 ^{Exp}  1–1.2  0.0625 (M = 250) 
MWIR λ = 4.9 μm, T = 77 K  T2SLs InAs/GaSb on GaSb substrate [48] PIN  1800 (20 V, 77 K) 200 (120 K)  <0.001 ^{Exp}  1–1.2  6.25 (M = 250) 
MWIR λ ~ 5 μm, T = 77 K  HgCdTe CdZnTe substrate [49] PIN  5300 (12.5 V)  <0.001 ^{Exp}  1–1.3  2.7 × 10^{−7} (M = 5300) 
MWIR, λ ~ 5 μm, T = 80 K  HgCdTe [50] PIN Guard ring  400 (8 V)  0.04 ^{Theory}  2.24  111 (8 V, M = 400) 
LWIR λ = 8 μm, T = 230 K  HgCdTe SAM  >100 (>5)  0.04 ^{Theory}  2.25  11 (5 V) 
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. 
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopytko, M.; Sobieski, J.; Gawron, W.; Martyniuk, P. Study of HgCdTe (100) and HgCdTe (111)B Heterostructures Grown by MOCVD and Their Potential Application to APDs Operating in the IR Range up to 8 µm. Sensors 2022, 22, 924. https://doi.org/10.3390/s22030924
Kopytko M, Sobieski J, Gawron W, Martyniuk P. Study of HgCdTe (100) and HgCdTe (111)B Heterostructures Grown by MOCVD and Their Potential Application to APDs Operating in the IR Range up to 8 µm. Sensors. 2022; 22(3):924. https://doi.org/10.3390/s22030924
Chicago/Turabian StyleKopytko, Małgorzata, Jan Sobieski, Waldemar Gawron, and Piotr Martyniuk. 2022. "Study of HgCdTe (100) and HgCdTe (111)B Heterostructures Grown by MOCVD and Their Potential Application to APDs Operating in the IR Range up to 8 µm" Sensors 22, no. 3: 924. https://doi.org/10.3390/s22030924