Effect of Wave Attenuation on Shear Wave Velocity Determination Using Bender Element Tests
Abstract
:1. Introduction
2. Materials and Experimental Layout
2.1. Sample Preparation
2.2. Test Arrangement and Test Procedure
3. Test Results
3.1. Travel Time Δt and S-Wave Velocity VS
3.2. Attenuation of Peak Points
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, T.G.; Chen, T.M. Laboratory investigation on assessing liquefaction resistance of sandy soils by shear wave velocity. J. Geotech. Geoenviron. Eng. 2007, 133, 959–972. [Google Scholar] [CrossRef]
- Kayen, R.; Moss, R.E.S.; Thompson, E.M.; Seed, R.B.; Cetin, K.O.; Kiureghian, A.D.; Tanaka, Y.; Tokimatsu, K. Shear-wave velocity–based probabilistic and deterministic assessment of seismic soil liquefaction potential. J. Geotech. Geoenviron. Eng. 2013, 139, 407–419. [Google Scholar] [CrossRef] [Green Version]
- Landon, M.M.; DeGroot, D.J.; Sheahan, T.C. Nondestructive sample quality assessment of a soft clay using shear wave velocity. J. Geotech. Geoenviron. Eng. 2007, 133, 424–432. [Google Scholar] [CrossRef]
- Richart, F.E.; Hall, J.R.; Woods, R.D. Vibrations of Soils and Foundations; Prentice Hall: Englewood Cliffs, NJ, USA, 1970. [Google Scholar]
- Shirley, D.J.; Hampton, L.D. Shear-wave measurements in laboratory sediments. J. Acoust. Soc. Am. 1978, 63, 607–613. [Google Scholar] [CrossRef]
- Shirley, D.J. An improved shear wave transducer. J. Acoust. Soc. Am. 1978, 63, 1643–1645. [Google Scholar] [CrossRef]
- Viggiani, G.; Atkinson, J. Interpretation of bender element tests. Géotechnique 1995, 45, 149–154. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Benahmed, N.; Cui, Y.J.; Tang, A.M. A novel method for determining the small-strain shear modulus of soil using the bender elements technique. Can. Geotech. J. 2017, 54, 280–289. [Google Scholar] [CrossRef]
- Ogino, T.; Kawaguchi, T.; Yamashita, S.; Kawajiri, S. Measurement deviations for shear wave velocity of bender element test using time domain, cross-correlation, and frequency domain approaches. Soils Found. 2015, 55, 329–342. [Google Scholar] [CrossRef] [Green Version]
- Gu, X.; Yang, J.; Huang, M. Laboratory measurements of small strain properties of dry sands by bender element. Soils Found. 2013, 53, 735–745. [Google Scholar] [CrossRef]
- Khan, Q.; Moon, S.; Ku, T. Idealized sine wave approach to determine arrival times of shear wave signals using bender elements. Geotech. Test. J. 2019, 43, 171–193. [Google Scholar] [CrossRef]
- Kumar, J.; Madhusudhan, B.N. A note on the measurement of travel times using bender and extender elements. Soil Dyn. Earthq. Eng. 2010, 30, 630–634. [Google Scholar] [CrossRef]
- Cai, Y.; Dong, Q.; Wang, J.; Gu, C.; Xu, C. Measurement of small strain shear modulus of clean and natural sands in saturated condition using bender element test. Soil Dyn. Earthq. Eng. 2015, 76, 100–110. [Google Scholar] [CrossRef]
- Arroyo, M.; Muir Wood, D.; Greening, P. Source near-field effects and pulse tests in soil samples. Géotechnique 2003, 53, 337–345. [Google Scholar] [CrossRef]
- Ingale, R.; Patel, A.; Mandal, A. Performance analysis of piezoceramic elements in soils: A review. Sens. Actuator A-Phys. 2017, 262, 46–63. [Google Scholar] [CrossRef]
- Yamashita, S.; Kawaguchi, T.; Nakata, Y.; Mikami, T.; Fujiwara, T.; Shibuya, S. Interpretation of international parallel test on the measurement of Gmax using bender elements. Soils Found. 2009, 49, 631–650. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Salinero, I.; Roesset, J.M.; Stokoe, I.; Kenneth, H. Analytical Studies of Body Wave Propagation and Attenuation; Geotechnical Engineering Report No. GR 86-15; University of Texas: Austin, TX, USA, 1986. [Google Scholar]
- Arulnathan, R.; Boulanger, R.W.; Riemer, M.F. Analysis of bender element tests. Geotech. Test. J. 1998, 21, 120–131. [Google Scholar]
- Pennington, D.S.; Nash, D.F.; Lings, M.L. Horizontally mounted bender elements for measuring anisotropic shear moduli in triaxial clay specimens. Geotech. Test. J. 2001, 24, 133–144. [Google Scholar]
- Wang, Y.H.; Lo, K.F.; Yan, W.M.; Dong, X.B. Measurement biases in the bender element test. J. Geotech. Geoenviron. Eng. 2007, 133, 564–574. [Google Scholar] [CrossRef]
- Leong, E.C.; Yeo, S.H.; Rahardjo, H. Measuring shear wave velocity using bender elements. Geotech. Test. J. 2005, 28, 488–498. [Google Scholar]
- Fam, M.; Santamarina, J.C. Study of geoprocesses with complementary mechanical and electromagnetic wave measurements in an oedometer. Geotech. Test. J. 1995, 18, 307–314. [Google Scholar]
- Gajo, A.; Fedel, A.; Mongiovi, L. Experimental analysis of the effects of fluid-solid coupling on the velocity of elastic waves in saturated porous media. Géotechnique 1997, 47, 993–1008. [Google Scholar] [CrossRef]
- Arroyo, M.; Muir Wood, D.; Greening, P.; Medina, L.; Rio, J. Effects of sample size on bender-based axial G0 measurements. Géotechnique 2006, 56, 39–52. [Google Scholar] [CrossRef]
- Lee, J.S.; Santamarina, J.C. Bender elements: Performance and signal interpretation. J. Geotech. Geoenviron. Eng. 2005, 131, 1063–1070. [Google Scholar] [CrossRef] [Green Version]
- Brignoli, E.; Gotti, M.; Stokoe, K.H. Measurement of shear waves in laboratory specimens by means of piezoelectric transducers. Geotech. Test. J. 1996, 19, 384–397. [Google Scholar]
- Arroyo, M.; Greening, P.; Muir Wood, D. An estimate of uncertainty in current pulse test practice. Rivista Italiana di Geotecnica 2003, 37, 17–35. [Google Scholar]
- Gu, X.; Yang, J.; Huang, M.; Gao, G. Bender element tests in dry and saturated sand: Signal interpretation and result comparison. Soils Found. 2015, 55, 951–962. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Wang, Y.; Li, J.; He, W.; Li, X. The effect of different boundary conditions on the result of bender-extender element test. In Proceedings of the International Conference on Geotechnical and Earthquake Engineering 2018: Geotechnical and Seismic Research and Practices for Sustainability, IACGE, Chongqing University, Chongqing, China, 20 October 2018. [Google Scholar]
- Viana da Fonseca, A.V.; Ferreira, C.; Fahey, M. A framework interpreting bender element tests, combining time-domain and frequency-domain methods. Geotech. Test. J. 2009, 32, 91–107. [Google Scholar]
- Kawaguchi, T.; Mitachi, T.; Shibuya, S. Evaluation of shear wave travel time in laboratory bender element test. In Proceedings of the Fifteenth International Conference on Soil Mechanics and Geotechnical Engineering, Istambul, Turkey, 27–31 August 2001; pp. 155–158. [Google Scholar]
- Jovicic, V.; Coop, M.R.; Simic, M. Objective criteria for determining Gmax from bender element tests. Géotechnique 1996, 46, 357–362. [Google Scholar] [CrossRef]
- Marjanovic, J.; Germaine, J.T. Experimental study investigating the effects of setup conditions on bender element velocity results. Geotech. Test. J. 2013, 36, 1–11. [Google Scholar] [CrossRef]
- Youn, J.U.; Choo, Y.W.; Kim, D.S. Measurement of small-strain shear modulus Gmax of dry and saturated sands by bender element, resonant column, and torsional shear tests. Can. Geotech. J. 2008, 45, 1426–1438. [Google Scholar] [CrossRef]
- Xu, K.; Gu, X.; Hu, C.; Lu, L. Comparison of small-strain shear modulus and Young’s modulus of dry sand measured by resonant column and bender–extender element. Can. Geotech. J. 2020, 57, 1745–1753. [Google Scholar] [CrossRef]
- Leong, E.C.; Yeo, S.H.; Rahardjo, H. Measurement of wave velocities and attenuation using an ultrasonic test system. Can. Geotech. J. 2004, 41, 844–860. [Google Scholar] [CrossRef]
- Lings, M.L.; Greening, P.D. A novel bender/extender element for soil testing. Géotechnique 2001, 51, 713–717. [Google Scholar] [CrossRef]
- Leong, E.C.; Cahyadi, J.; Rahardjo, H. Measuring shear and compression wave velocities of soil using bender-extender elements. Can. Geotech. J. 2009, 46, 792–812. [Google Scholar] [CrossRef]
References | Test Devices/Conditions | Material | Sample Dimensions or Test Distance (mm) | |
---|---|---|---|---|
Length (L) | Diameter (D) | |||
[26] | Triaxial test | Consolidated clay | 22–95.8 | ≈50 |
[20] | Model box | Toyoura sand | 60–160 | / |
[27] | Oedometer test | Gault clay | 70–150 | 90 |
[28] | Resonant column test | Toyoura sand | 100 | 50 |
[11] | Unconfined | Soft clays mixed with ordinary Portland cement | 100 | 50 |
[29] | Confined by tube | Dry sand | 120–320 | 50 |
[30] | Triaxial test | Residual soil from Porto granite | 140 | 70 |
[9] | Triaxial test | Clay | 150 | 75 |
[18] | Triaxial test | Fibrous peat organic soil | 154 | 72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Zheng, X.; Wang, H.; Luo, W. Effect of Wave Attenuation on Shear Wave Velocity Determination Using Bender Element Tests. Sensors 2022, 22, 1263. https://doi.org/10.3390/s22031263
Gao Y, Zheng X, Wang H, Luo W. Effect of Wave Attenuation on Shear Wave Velocity Determination Using Bender Element Tests. Sensors. 2022; 22(3):1263. https://doi.org/10.3390/s22031263
Chicago/Turabian StyleGao, Yanbin, Xiaojun Zheng, Hao Wang, and Wenkang Luo. 2022. "Effect of Wave Attenuation on Shear Wave Velocity Determination Using Bender Element Tests" Sensors 22, no. 3: 1263. https://doi.org/10.3390/s22031263
APA StyleGao, Y., Zheng, X., Wang, H., & Luo, W. (2022). Effect of Wave Attenuation on Shear Wave Velocity Determination Using Bender Element Tests. Sensors, 22(3), 1263. https://doi.org/10.3390/s22031263