Flexible Inkjet-Printed Heaters Utilizing Graphene-Based Inks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Characterization of f-rGO
2.3. Formation of Printed Heaters and Measurement Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barmpakos, D.; Moschos, A.; Syrovy, T.; Koutsis, T.; Syrova, L.; Kaltsas, G. A Fully Printed Flexible Multidirectional Thermal Flow Sensor. Flex. Print. Electron. 2020, 5, 035005. [Google Scholar] [CrossRef]
- Kuo, J.T.W.; Yu, L.; Meng, E. Micromachined Thermal Flow Sensors—A Review. Micromachines 2012, 3, 550–573. [Google Scholar] [CrossRef] [Green Version]
- Claramunt, S.; Monereo, O.; Boix, M.; Leghrib, R.; Prades, J.D.; Cornet, A.; Merino, P.; Merino, C.; Cirera, A. Flexible Gas Sensor Array with an Embedded Heater Based on Metal Decorated Carbon Nanofibres. Sens. Actuators B Chem. 2013, 187, 401–406. [Google Scholar] [CrossRef] [Green Version]
- Rieu, M.; Camara, M.; Tournier, G.; Viricelle, J.-P.; Pijolat, C.; de Rooij, N.F.; Briand, D. Fully Inkjet Printed SnO2 Gas Sensor on Plastic Substrate. Sens. Actuators B Chem. 2016, 236, 1091–1097. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, J.L.; Annanouch, F.E.; Camara, M.; LLobet, E.; Briand, D. Single Layer Gold Hotplate, Printed on Polyimide, with Heater Used as Sensing Current Drain for Metal-Oxide Gas Sensor. Procedia Eng. 2015, 120, 707–710. [Google Scholar] [CrossRef] [Green Version]
- Danesh, E.; Molina-Lopez, F.; Camara, M.; Bontempi, A.; Quintero, A.V.; Teyssieux, D.; Thiery, L.; Briand, D.; de Rooij, N.F.; Persaud, K.C. Development of a New Generation of Ammonia Sensors on Printed Polymeric Hotplates. Anal. Chem. 2014, 86, 8951–8958. [Google Scholar] [CrossRef]
- Kassem, O.; Saadaoui, M.; Rieu, M.; Viricelle, J.-P. A Novel Approach to a Fully Inkjet Printed SnO2 -Based Gas Sensor on a Flexible Foil. J. Mater. Chem. C 2019, 7, 12343–12353. [Google Scholar] [CrossRef]
- Lee, H.-K.; Moon, S.E.; Choi, N.-J.; Yang, W.S.; Kim, J. Fabrication of a HCHO Gas Sensor Based on a MEMS Heater and Inkjet Printing. J. Korean Phys. Soc. 2012, 60, 225–229. [Google Scholar] [CrossRef]
- Quintero, A.V.; Molina-Lopez, F.; Mattana, G.; Briand, D.; de Rooij, N.F. Self-Standing Printed Humidity Sensor with Thermo-Calibration and Integrated Heater. In Proceedings of the 2013 Transducers Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS EUROSENSORS XXVII), Barcelona, Spain, 16–20 June 2013; pp. 838–841. [Google Scholar]
- Santra, S.; Hu, G.; Howe, R.C.T.; De Luca, A.; Ali, S.Z.; Udrea, F.; Gardner, J.W.; Ray, S.K.; Guha, P.K.; Hasan, T. CMOS Integration of Inkjet-Printed Graphene for Humidity Sensing. Sci. Rep. 2015, 5, 17374. [Google Scholar] [CrossRef] [Green Version]
- Etxebarria, J.; Berganzo, J.; Elizalde, J.; Llamazares, G.; Fernández, L.J.; Ezkerra, A. Low Cost Polymeric On-Chip Flow Sensor with Nanoliter Resolution. Sens. Actuators B Chem. 2016, 235, 188–196. [Google Scholar] [CrossRef]
- Camara, M.; Breuil, P.; Pijolat, C.; Viricelle, J.P.; de Rooij, N.F.; Briand, D. Tubular Gas Preconcentrators Based on Inkjet Printed Micro-Hotplates on Foil. Sens. Actuators B Chem. 2016, 236, 1111–1117. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, Y.; Shibayama, S.; Uete, K.; Yamaguchi, H.; Niimi, T. Electric Conductive Pattern Element Fabricated Using Commercial Inkjet Printer for Paper-Based Analytical Devices. Anal. Chem. 2015, 87, 5762–5765. [Google Scholar] [CrossRef]
- Saito, M.; Kanai, E.; Fujita, H.; Aso, T.; Matsutani, N.; Fujie, T. Flexible Induction Heater Based on the Polymeric Thin Film for Local Thermotherapy. Adv. Funct. Mater. 2021, 31, 2102444. [Google Scholar] [CrossRef]
- Sathyanarayanan, G.; Haapala, M.; Kiiski, I.; Sikanen, T. Digital Microfluidic Immobilized Cytochrome P450 Reactors with Integrated Inkjet-Printed Microheaters for Droplet-Based Drug Metabolism Research. Anal. Bioanal. Chem. 2018, 410, 6677–6687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, N.; Huang, C.; Wan, S.; Kang, L.; Hu, M.; Zhang, Y.; Wu, X.; Zhang, J. A Novel Flexible Silver Heater Fabricated by a Solution-Based Polyimide Metalization and Inkjet-Printed Carbon Masking Technique. ACS Appl. Electron. Mater. 2019, 1, 928–935. [Google Scholar] [CrossRef]
- Liu, Q.; Tian, B.; Liang, J.; Wu, W. Recent Advances in Printed Flexible Heaters for Portable and Wearable Thermal Management. Mater. Horiz. 2021, 8, 1634–1656. [Google Scholar] [CrossRef]
- Falco, A.; Romero, F.J.; Loghin, F.C.; Lyuleeva, A.; Becherer, M.; Lugli, P.; Morales, D.P.; Rodriguez, N.; Salmerón, J.F.; Rivadeneyra, A. Printed and Flexible Microheaters Based on Carbon Nanotubes. Nanomaterials 2020, 10, 1879. [Google Scholar] [CrossRef]
- Mitra, D.; Thalheim, R.; Zichner, R. Inkjet Printed Heating Elements Based on Nanoparticle Silver Ink with Adjustable Temperature Distribution for Flexible Applications. Phys. Status Solidi A 2021, 218, 2100257. [Google Scholar] [CrossRef]
- Wang, P.-H.; Chen, S.-P.; Su, C.-H.; Liao, Y.-C. Direct Printed Silver Nanowire Thin Film Patterns for Flexible Transparent Heaters with Temperature Gradients. RSC Adv. 2015, 5, 98412–98418. [Google Scholar] [CrossRef]
- Huang, Q.; Al-Milaji, K.N.; Zhao, H. Inkjet Printing of Silver Nanowires for Stretchable Heaters. ACS Appl. Nano Mater. 2018, 1, 4528–4536. [Google Scholar] [CrossRef]
- Choi, W.; Lahiri, I.; Seelaboyina, R.; Kang, Y.S. Synthesis of Graphene and Its Applications: A Review. Crit. Rev. Solid State Mater. Sci. 2010, 35, 52–71. [Google Scholar] [CrossRef]
- Wang, R.; Ren, X.-G.; Yan, Z.; Jiang, L.-J.; Sha, W.E.I.; Shan, G.-C. Graphene Based Functional Devices: A Short Review. Front. Phys. 2018, 14, 13603. [Google Scholar] [CrossRef]
- Mohan, V.B.; Lau, K.; Hui, D.; Bhattacharyya, D. Graphene-Based Materials and Their Composites: A Review on Production, Applications and Product Limitations. Compos. Part B Eng. 2018, 142, 200–220. [Google Scholar] [CrossRef]
- Yao, Y.; Fu, K.K.; Yan, C.; Dai, J.; Chen, Y.; Wang, Y.; Zhang, B.; Hitz, E.; Hu, L. Three-Dimensional Printable High-Temperature and High-Rate Heaters. ACS Nano 2016, 10, 5272–5279. [Google Scholar] [CrossRef]
- Xu, L.; Wang, H.; Wu, Y.; Wang, Z.; Wu, L.; Zheng, L. A One-Step Approach to Green and Scalable Production of Graphene Inks for Printed Flexible Film Heaters. Mater. Chem. Front. 2021, 5, 1895–1905. [Google Scholar] [CrossRef]
- Smovzh, D.V.; Kostogrud, I.A.; Boyko, E.V.; Matochkin, P.E.; Pilnik, A.A. Joule Heater Based on Single-Layer Graphene. Nanotechnology 2020, 31, 335704. [Google Scholar] [CrossRef] [PubMed]
- Karim, N.; Zhang, M.; Afroj, S.; Koncherry, V.; Potluri, P.; Novoselov, K.S. Graphene-Based Surface Heater for de-Icing Applications. RSC Adv. 2018, 8, 16815–16823. [Google Scholar] [CrossRef] [Green Version]
- Vertuccio, L.; De Santis, F.; Pantani, R.; Lafdi, K.; Guadagno, L. Effective De-Icing Skin Using Graphene-Based Flexible Heater. Compos. Part B Eng. 2019, 162, 600–610. [Google Scholar] [CrossRef]
- Bobinger, M.R.; Romero, F.J.; Salinas-Castillo, A.; Becherer, M.; Lugli, P.; Morales, D.P.; Rodríguez, N.; Rivadeneyra, A. Flexible and Robust Laser-Induced Graphene Heaters Photothermally Scribed on Bare Polyimide Substrates. Carbon 2019, 144, 116–126. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Liu, F.; Luo, S. Laser-Induced Graphene Paper Heaters with Multimodally Patternable Electrothermal Performance for Low-Energy Manufacturing of Composites. ACS Appl. Mater. Interfaces 2020, 12, 23284–23297. [Google Scholar] [CrossRef]
- Khan, U.; Kim, T.-H.; Lee, K.H.; Lee, J.-H.; Yoon, H.-J.; Bhatia, R.; Sameera, I.; Seung, W.; Ryu, H.; Falconi, C.; et al. Self-Powered Transparent Flexible Graphene Microheaters. Nano Energy 2015, 17, 356–365. [Google Scholar] [CrossRef]
- Kang, J.; Kim, H.; Kim, K.S.; Lee, S.-K.; Bae, S.; Ahn, J.-H.; Kim, Y.-J.; Choi, J.-B.; Hong, B.H. High-Performance Graphene-Based Transparent Flexible Heaters. Nano Lett. 2011, 11, 5154–5158. [Google Scholar] [CrossRef]
- Zhang, T.-Y.; Zhao, H.-M.; Wang, D.-Y.; Wang, Q.; Pang, Y.; Deng, N.-Q.; Cao, H.-W.; Yang, Y.; Ren, T.-L. A Super Flexible and Custom-Shaped Graphene Heater. Nanoscale 2017, 9, 14357–14363. [Google Scholar] [CrossRef]
- Lin, S.-Y.; Zhang, T.-Y.; Lu, Q.; Wang, D.-Y.; Yang, Y.; Wu, X.-M.; Ren, T.-L. High-Performance Graphene-Based Flexible Heater for Wearable Applications. RSC Adv. 2017, 7, 27001–27006. [Google Scholar] [CrossRef] [Green Version]
- Cui, Z. Printed Electronics: Materials, Technologies and Applications; John Wiley & Sons Singapore Pte. Ltd: Singapore, 2016; ISBN 978-1-118-92095-4. [Google Scholar]
- Teichler, A.; Perelaer, J.; Schubert, U.S. Inkjet Printing of Organic Electronics—Comparison of Deposition Techniques and State-of-the-Art Developments. J. Mater. Chem. C 2013, 1, 1910. [Google Scholar] [CrossRef]
- Barmpakos, D.; Belessi, V.; Schelwald, R.; Kaltsas, G. Evaluation of Inkjet-Printed Reduced and Functionalized Water-Dispersible Graphene Oxide and Graphene on Polymer Substrate—Application to Printed Temperature Sensors. Nanomaterials 2021, 11, 2025. [Google Scholar] [CrossRef] [PubMed]
- Belessi, V.; Manolis, G.K.; Vlahopoulos, G.; Philippakopoulou, T.; Steriotis, T.; Koutsioukis, A.; Georgakilas, V. Gravure and Flexography Printing of Highly Conductive Reduced Graphene Oxide Inks. In Proceedings of the 3rd International Printing Technologies Symposium, Istanbul, Turkey, 10–12 October 2019; pp. 180–188. [Google Scholar]
- Belessi, V.; Petridis, D.; Steriotis, T.; Spyrou, K.; Manolis, G.K.; Psycharis, V.; Georgakilas, V. Simultaneous Reduction and Surface Functionalization of Graphene Oxide for Highly Conductive and Water Dispersible Graphene Derivatives. SN Appl. Sci. 2018, 1, 77. [Google Scholar] [CrossRef] [Green Version]
- Secor, E.B.; Prabhumirashi, P.L.; Puntambekar, K.; Geier, M.L.; Hersam, M.C. Inkjet Printing of High Conductivity, Flexible Graphene Patterns. J. Phys. Chem. Lett. 2013, 4, 1347–1351. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barmpakos, D.; Belessi, V.; Xanthopoulos, N.; Krontiras, C.A.; Kaltsas, G. Flexible Inkjet-Printed Heaters Utilizing Graphene-Based Inks. Sensors 2022, 22, 1173. https://doi.org/10.3390/s22031173
Barmpakos D, Belessi V, Xanthopoulos N, Krontiras CA, Kaltsas G. Flexible Inkjet-Printed Heaters Utilizing Graphene-Based Inks. Sensors. 2022; 22(3):1173. https://doi.org/10.3390/s22031173
Chicago/Turabian StyleBarmpakos, Dimitris, Vassiliki Belessi, Nikolaos Xanthopoulos, Christoforos A. Krontiras, and Grigoris Kaltsas. 2022. "Flexible Inkjet-Printed Heaters Utilizing Graphene-Based Inks" Sensors 22, no. 3: 1173. https://doi.org/10.3390/s22031173
APA StyleBarmpakos, D., Belessi, V., Xanthopoulos, N., Krontiras, C. A., & Kaltsas, G. (2022). Flexible Inkjet-Printed Heaters Utilizing Graphene-Based Inks. Sensors, 22(3), 1173. https://doi.org/10.3390/s22031173