Magnetically Tuned Impedance and Capacitance for FeGa/PZT Bilayer Composite under Bending and Longitudinal Vibration Modes
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
3.1. Magnetoimpedance Effect
3.2. Magnetocapacitance Effect
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Landau, L.D.; Lifshitz, E.M. Electrodynamics of Continuous Media; Pergamon: Oxford, UK, 1960; Chapter 4; p. 169. [Google Scholar]
- Dong, S.X.; Zhai, J.; Xing, Z.; Li, J.F.; Viehland, D. Small dc magnetic field response of magnetoelectric laminate composites. Appl. Phys. Lett. 2005, 86, 102901. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Wang, Y. The effects of the soft magnetic alloys’ material characteristics on resonant magnetoelectric coupling for magnetostrictive/piezoelectric composites. Smart Mater. Struct. 2019, 28, 045003. [Google Scholar] [CrossRef]
- Chu, Z.; Shi, H.; Shi, W.; Liu, G.; Wu, J.; Yang, J.; Dong, S. Enhanced resonance magnetoelectric coupling in (1-1) connectivity composites. Adv. Mater. 2017, 29, 1606022. [Google Scholar] [CrossRef] [PubMed]
- Rupp, T.; Truong, B.D.; Williams, S.; Roundy, S. Magnetoelectric transducer designs for use as wireless power receivers in wearable and implantable applications. Materials 2019, 12, 512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, C.M.; Li, J.; Viehland, D.; Zhuang, X. A review on applications of magnetoelectric composites: From heterostructural uncooled magnetic sensors, energy harvesters to highly efficient power converters. J. Phys. D Appl. Phys. 2018, 51, 263002. [Google Scholar] [CrossRef]
- Reis, S.; Silva, M.P.; Castro, N.; Correia, V.; Martins, P.; Lasheras, A.; Gutierrez, J.; Barandiarán, J.M.; Rocha, J.G.; Lanceros-Mendez, S. Characterization of Metglas/poly(vinylidene fluoride)/Metglas magnetoelectric laminates for AC/DC magnetic sensor applications. Mater. Des. 2016, 92, 906–910. [Google Scholar] [CrossRef]
- Chu, Z.; Shi, H.; PourhosseiniAsl, M.J.; Wu, J.; Shi, W.; Gao, X.; Yuan, X.; Dong, S. A magnetoelectric flux gate: New approach for weak DC magnetic field detection. Sci. Rep. 2017, 7, 8592. [Google Scholar] [CrossRef] [Green Version]
- Giang, D.T.H.; Tam, H.A.; Khanh, V.T.N.; Vinh, N.T.; Tuan, P.A.; Tuan, N.V.; Ngoc, N.T.; Duc, N.H. Magnetoelectric Vortex Magnetic Field Sensors Based on the Metglas/PZT Laminates. Sensors 2020, 20, 2810. [Google Scholar] [CrossRef]
- Zhang, M.; Or, S. Gradient-Type Magnetoelectric Current Sensor with Strong Multisource Noise Suppression. Sensors 2018, 18, 588. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Wang, Z.F.; Luo, X.B.; Tao, J.; Zhang, N.; Xu, X.R.; Zhou, L.S. Capacitive type magnetoimpedance effect in piezoelectric-magnetostrictive composite resonator. Appl. Phys. Lett. 2015, 107, 172904. [Google Scholar] [CrossRef]
- Fina, I.; Dix, N.; Fàbrega, L.; Sánchez, F.; Fontcuberta, J. Magnetocapacitance in BaTiO3-CoFe2O4 Nanocomposites. Thin Solid Film. 2010, 518, 4634–4636. [Google Scholar] [CrossRef]
- Singh, P.; Laishram, R.; Sharma, P.; Kolte, J. Giant magnetocapacitance in magnetoelectric BNT/NFO particulate composites. J. Mater. Sci. Mater. Electron. 2021, 32, 21288–21296. [Google Scholar] [CrossRef]
- Wan, J.G.; Lu, Q.; Chen, B.; Song, F.G.; Liu, J.M.; Dong, J.B.; Wang, G.H. Giant room temperature magnetocapacitance in Co2+ doped SnO2 dielectric films. Appl. Phys. Lett. 2009, 95, 152901. [Google Scholar] [CrossRef]
- Hrib, L.M.; Pintilie, L.; Alexe, M. Magnetocapacitance in La0.7Sr0.3MnO3/Pb(Zr0.2Ti0.8)O3/ La0.7Sr0.3MnO3 multiferroic heterostructures. Sci. Rep. 2017, 7, 6563. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wen, Y.; Song, F.; Li, P.; Yu, S. Enhanced inductance in laminated multilayer magnetic planar inductor for sensitive magnetic field detection. Appl. Phys. Lett. 2018, 112, 182403. [Google Scholar] [CrossRef] [Green Version]
- Castel, V.; Brosseau, C. Magnetic field dependence of the effective permittivity in BaTiO3/Ni nanocomposites observed via microwave spectroscopy. Appl. Phys.Lett. 2008, 92, 233110. [Google Scholar] [CrossRef]
- Castel, V.; Brosseau, C.; Youssef, J.B. Magnetoelectric effect in BaTiO3/Ni particulate nanocomposites at microwave frequencies. J. Appl. Phys. 2009, 106, 064312. [Google Scholar] [CrossRef]
- Ramachandran, B.; Sudarshan, N.; Rao, M.S.R. Magnetoimpedance and magnetodielectric properties of single phase 45PMN-20PFW-35PT ceramics. J. Appl. Phys. 2010, 107, 09C503. [Google Scholar] [CrossRef]
- Wang, W.; Luo, X.B.; Zhang, N.; Ma, Q.Y. Giant room-temperature magnetocapacitance in Terfenol-D/PZT/Terfenol-D trilayer composites. Sens. Actuator. A Phys. 2011, 171, 248–251. [Google Scholar] [CrossRef]
- Zhang, J.J.; Wen, J.B.; Gao, Y.W. A nonlinear model for magnetocapacitance effect in PZT-ring/Terfenol-D-strip magnetoelectric composites. AIP Adv. 2016, 6, 065318. [Google Scholar] [CrossRef]
- Zhang, J.J. Effect of boundary conditions on magnetocapacitance effect in a ring-type magnetoelectric structure. Phys. Lett. A 2017, 381, 3909–3916. [Google Scholar] [CrossRef]
- Wan, J.G.; Li, Z.Y.; Wang, Y.; Zeng, M.; Wang, G.H.; Liu, J.M. Strong flexural resonant magnetoelectric effect in Terfenol-D/epoxy-Pb(Zr,Ti)O3 bilayer. Appl. Phys. Lett. 2005, 86, 202504. [Google Scholar] [CrossRef]
- Israel, C.; Petrov, V.M.; Srinivasan, G.; Mathur, N.D. Magnetically tuned mechanical resonances in magnetoelectric multilayer capacitors. Appl. Phys. Lett. 2009, 95, 072505. [Google Scholar] [CrossRef]
- Cho, K.H.; Park, C.S.; Priya, S. Effect of intensive and extensive loss factors on the dynamic response of magnetoelectric laminates. Appl. Phys. Lett. 2010, 97, 182902. [Google Scholar] [CrossRef]
Material | Density (kg/cm) | Volume Fraction | μr | Young’s Modulus (GPa) | λs (ppm) |
---|---|---|---|---|---|
FeGa | 7700 | 50% | 180 | 36 | 300 |
PZT | 7600 | 50% | 64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Wang, Y.; Qin, F.; Wan, Z. Magnetically Tuned Impedance and Capacitance for FeGa/PZT Bilayer Composite under Bending and Longitudinal Vibration Modes. Sensors 2022, 22, 9283. https://doi.org/10.3390/s22239283
Chen L, Wang Y, Qin F, Wan Z. Magnetically Tuned Impedance and Capacitance for FeGa/PZT Bilayer Composite under Bending and Longitudinal Vibration Modes. Sensors. 2022; 22(23):9283. https://doi.org/10.3390/s22239283
Chicago/Turabian StyleChen, Lei, Yao Wang, Fujian Qin, and Zhongjie Wan. 2022. "Magnetically Tuned Impedance and Capacitance for FeGa/PZT Bilayer Composite under Bending and Longitudinal Vibration Modes" Sensors 22, no. 23: 9283. https://doi.org/10.3390/s22239283
APA StyleChen, L., Wang, Y., Qin, F., & Wan, Z. (2022). Magnetically Tuned Impedance and Capacitance for FeGa/PZT Bilayer Composite under Bending and Longitudinal Vibration Modes. Sensors, 22(23), 9283. https://doi.org/10.3390/s22239283