A Study on the Effectiveness of Spatial Filters on Thermal Image Pre-Processing and Correlation Technique for Quantifying Defect Size
Abstract
:1. Introduction
2. Background
2.1. Spatial Filters
2.1.1. Gaussian Filter
2.1.2. Window Averaging Filter
2.1.3. Median Filter
2.2. Correlation Technique
2.3. Signal to Noise Ratio
3. Methods and Materials
4. Results and Discussion
4.1. Selection of ROI and Pre-Processing with Spatial Filters
4.2. Post-Processing with a Correlation Technique
5. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarfraz, M. Introductory Chapter: On Digital Image Processing. In Digital Imaging; Anonymous, Ed.; IntechOpen: London, UK, 2020. [Google Scholar]
- Vollmer, M.; Mllmann, K. Infrared Thermal Imaging: Fundamentals, Research and Applications, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Liu, C.; Cichon, A.; Królczyk, G.; Li, Z. Technology Development and Commercial Applications of Industrial Fault Diagnosis System: A Review. Int. J. Adv. Manuf. Technol. 2021, 118, 3497–3529. [Google Scholar] [CrossRef]
- Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; Molleda, J.; Bulnes, F. Infrared Thermography for Temperature Measurement and Non-Destructive Testing. Sensors 2014, 14, 12305–12348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahiri, B.B.; Bagavathiappan, S.; Jayakumar, T.; Philip, J. Medical Applications of Infrared Thermography: A Review. Infrared Phys. Technol. 2012, 55, 221–235. [Google Scholar] [CrossRef]
- Maldague, X.P. Nondestructive Evaluation of Materials by Infrared Thermography; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Gade, R.; Moeslund, T.B. Thermal Cameras and Applications: A Survey. Mach. Vis. Appl. 2014, 25, 245–262. [Google Scholar] [CrossRef] [Green Version]
- Sarawade, A.A.; Charniya, N.N. Infrared Thermography and its Applications: A Review. In Proceedings of the 2018 3rd International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 15–16 October 2018; pp. 280–285. [Google Scholar]
- Carlomagno, G.M.; Meola, C. Comparison between Thermographic Techniques for Frescoes NDT. NDT E Int. 2002, 35, 559–565. [Google Scholar] [CrossRef]
- Theodorakeas, P.; Sfarra, S.; Ibarra-Castanedo, C.; Avdelidis, N.; Koui, M.; Maldague, X.; Ambrosini, D.; Paoletti, D. The use of Pulsed Thermography for the Investigation of Art and Cultural Heritage Objects. In Proceedings of the 5th International Conference on NDT of HSNT-IC MINDT, Athens, Greece, 20–22 May 2013. [Google Scholar]
- Maldague, X.; Marinetti, S. Pulse Phase Infrared Thermography. J. Appl. Phys. 1996, 79, 2694–2698. [Google Scholar] [CrossRef] [Green Version]
- Maldague, X. Theory and Practice of Infrared Technology for Nondestructive Testing; Wiley-Interscience: Hoboken, NJ, USA, 2001. [Google Scholar]
- Maldague, X.; Galmiche, F.; Ziadi, A. Advances in Pulsed Phase Thermography. Infrared Phys. Technol. 2002, 43, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Sun, J. Analysis of Pulsed Thermography Methods for Defect Depth Prediction. J. Heat Transfer. 2006, 128, 329–338. [Google Scholar] [CrossRef]
- Parker, W.; Jenkins, R.; Butler, C.; Abbott, G. Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity. J. Appl. Phys. 1961, 32, 1679–1684. [Google Scholar] [CrossRef]
- Monti, R.; Mannara, G. Non Destructive Testing of Honeycomb Structures by Computerized Thermographic Systems(for Spacecraft Applications). In Proceedings of the 34th International Astronautical Federation, International Astronautical Congress, Budapest, Hungary, 10–15 October 1983. [Google Scholar]
- Vavilov, V.; Taylor, R. Theoretical and Practical Aspects of the Thermal Nondestructive Testing of Bonded Structures. Acad. Press Res. Tech. Nondestruct. Test. 1982, 5, 239–279. [Google Scholar]
- Favro, L.; Ahmed, T.; Han, X.; Wang, L.; Wang, X.; Kuo, P.; Thomas, R. Thermal wave imaging of disbonding and corrosion on aircraft. In Review of Progress in Quantitative Nondestructive Evaluation; Anonymous, Ed.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 1747–1753. [Google Scholar]
- Ibarra-Castanedo, C.; Piau, J.; Guilbert, S.; Avdelidis, N.P.; Genest, M.; Bendada, A.; Maldague, X.P. Comparative Study of Active Thermography Techniques for the Nondestructive Evaluation of Honeycomb Structures. Res. Nondestr. Eval. 2009, 20, 1–31. [Google Scholar] [CrossRef]
- Maldague, X.P.; Shiryaev, V.V.; Boisvert, E.; Vavilov, V.P. Transient Thermal Nondestructive Testing (NDT) of Defects in Aluminum Panels. In Proceedings of the Thermosense XVII: An International Conference on Thermal Sensing and Imaging Diagnostic Applications, Orlando, FL, USA, 19–21 April 1995; pp. 233–243. [Google Scholar]
- Shrestha, R.; Sfarra, S.; Ridolfi, S.; Gargiulo, G.; Kim, W. A Numerical–thermal–thermographic NDT Evaluation of an Ancient Marquetry Integrated with X-ray and XRF Surveys. J. Therm. Anal. Calorim. 2022, 147, 2265–2279. [Google Scholar] [CrossRef]
- Shrestha, R.; Kim, W. Evaluation of Coating Thickness by Thermal Wave Imaging: A Comparative Study of Pulsed and Lock-in Infrared thermography–Part I: Simulation. Infrared Phys. Technol. 2017, 83, 124–131. [Google Scholar] [CrossRef]
- Shrestha, R.; Kim, W. Evaluation of Coating Thickness by Thermal Wave Imaging: A Comparative Study of Pulsed and Lock-in Infrared thermography–Part II: Experimental Investigation. Infrared Phys. Technol. 2018, 92, 24–29. [Google Scholar] [CrossRef]
- Chung, Y.; Shrestha, R.; Lee, S.; Kim, W. Thermographic Inspection of Internal Defects in Steel Structures: Analysis of Signal Processing Techniques in Pulsed Thermography. Sensors 2020, 20, 6015. [Google Scholar] [CrossRef] [PubMed]
- Mercuri, F.; Orazi, N.; Paoloni, S.; Cicero, C.; Zammit, U. Pulsed Thermography Applied to the Study of Cultural Heritage. Appl. Sci. 2017, 7, 1010. [Google Scholar] [CrossRef] [Green Version]
- Kostroun, T.; Dvořák, M. Application of the Pulse Infrared Thermography Method for Nondestructive Evaluation of Composite Aircraft Adhesive Joints. Materials 2021, 14, 533. [Google Scholar] [CrossRef] [PubMed]
- D’Accardi, E.; Krankenhagen, R.; Ulbricht, A.; Pelkner, M.; Pohl, R.; Palumbo, D.; Galietti, U. Capability to Detect and Localize Typical Defects of Laser Powder Bed Fusion (L-PBF) Process: An Experimental Investigation with Different Non-Destructive Techniques. Prog. Addit. Manuf. 2022, 1–18. [Google Scholar] [CrossRef]
- Deemer, C. Front-Flash Thermal Imaging Characterization of Continuous Fiber Ceramic Composites. In Proceedings of the 23rd Annual Cocoa Beach Conference and Exposition, Cocoa Beach, FL, USA, 25–29 January 1999. [Google Scholar]
- Rajic, N. Principal Component Thermography for Flaw Contrast Enhancement and Flaw Depth Characterisation in Composite Structures. Compos. Struct. 2002, 58, 521–528. [Google Scholar] [CrossRef]
- Shepard, S.M.; Lhota, J.R.; Rubadeux, B.A.; Wang, D.; Ahmed, T. Reconstruction and Enhancement of Active Thermographic Image Sequences. Opt. Eng. 2003, 42, 1337–1342. [Google Scholar] [CrossRef]
- Rothbart, N.; Maierhofer, C.; Goldammer, M.; Hohlstein, F.; Koch, J.; Kryukov, I.; Mahler, G.; Stotter, B.; Walle, G.; Oswald-Tranta, B. Probability of Detection Analysis of Round Robin Test Results Performed by Flash Thermography. Quant. InfraRed Thermogr. J. 2017, 14, 1–23. [Google Scholar] [CrossRef]
- Liu, H.; Li, W.; Yang, L.; Deng, K.; Zhao, Y. Automatic Reconstruction of Irregular Shape Defects in Pulsed Thermography using Deep Learning Neural Network. Neural Comput. Appl. 2022, 34, 21701–21714. [Google Scholar] [CrossRef]
- Wetsel Jr, G.C.; McDonald, F.A. Resolution and Definition in Photothermal Imaging. J. Appl. Phys. 1984, 56, 3081–3085. [Google Scholar] [CrossRef]
- Wang, Z.; Wan, L.; Xiong, N.; Zhu, J.; Ciampa, F. Variational Level Set and Fuzzy Clustering for Enhanced Thermal Image Segmentation and Damage Assessment. NDT E Int. 2021, 118, 102396. [Google Scholar] [CrossRef]
- De Oliveira, B.C.; Nienheysen, P.; Baldo, C.R.; Gonçalves, A.A., Jr.; Schmitt, R.H. Improved Impact Damage Characterisation in CFRP Samples using the Fusion of Optical Lock-in Thermography and Optical Square-Pulse Shearography Images. NDT E Int. 2020, 111, 102215. [Google Scholar] [CrossRef]
- Yuan, L.; Zhu, X.; Sun, Q.; Liu, H.; Yuen, P.; Liu, Y. Automatic Extraction of Material Defect Size by Infrared Image Sequence. Appl. Sci. 2020, 10, 8248. [Google Scholar] [CrossRef]
- Saintey, M.; Almond, D.P. Defect Sizing by Transient Thermography. II. A Numerical Treatment. J. Phys. D 1995, 28, 2539. [Google Scholar] [CrossRef]
- Zhu, P.; Wu, D.; Yin, L.; Han, W. Quantitative Detection of Defect Size Based on Infrared Thermography: Temperature Integral Method. Opt. Express 2022, 30, 9119–9136. [Google Scholar] [CrossRef]
- Ranjit, S.; Kang, K.; Kim, W. Investigation of Lock-in Infrared Thermography for Evaluation of Subsurface Defects Size and Depth. Int. J. Precis. Eng. Manuf. 2015, 16, 2255–2264. [Google Scholar] [CrossRef]
- D’Accardi, E.; Palumbo, D.; Galietti, U. Experimental Procedure to Assess Depth and Size of Defects with Pulsed Thermography. J. Nondestr. Eval. 2022, 41, 41. [Google Scholar] [CrossRef]
- Grys, S. Determining the Dimension of Subsurface Defects by Active Infrared Thermography–experimental Research. J. Sens. Sens. Syst. 2018, 7, 153–160. [Google Scholar] [CrossRef]
- Lin, C.; Kuo, C.; Lai, C.; Tsai, M.; Chang, Y.; Cheng, H. A Novel Approach to Fast Noise Reduction of Infrared Image. Infrared Phys. Technol. 2011, 54, 1–9. [Google Scholar] [CrossRef]
- Budzan, S.; Wyżgolik, R. Noise Reduction in Thermal Images. In Proceedings of the International Conference on Computer Vision and Graphics, Warsaw, Poland, 19–21 September 2022; pp. 116–123. [Google Scholar]
- Vardasca, R.; Gabriel, J.; Plassmann, P.; Ring, F.; Jones, C. Comparison of Different Image Enhancing Techniques for Medical Thermal Images. J. Med. Imaging Health Inform. 2015, 5, 709–714. [Google Scholar] [CrossRef] [Green Version]
- Alisha, P.; Sheela, K.G. Image Denoising Techniques—An Overview. IOSR J. Electr. Commun. Eng. 2016, 11, 78–84. [Google Scholar]
- Wang, M.; Zheng, S.; Li, X.; Qin, X. A New Image Denoising Method Based on Gaussian Filter. In Proceedings of the International Conference on Information Science, Electronics and Electrical Engineering, Sapporo City, Japan, 26–28 April 2014; pp. 163–167. [Google Scholar]
- Fan, L.; Zhang, F.; Fan, H.; Zhang, C. Brief Review of Image Denoising Techniques. Vis. Comput. Ind. Biomed. Art 2019, 2, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, R.J. Image Enhancement and Noise Removal by using New Spatial Filters. UPB Sci. Bull. Ser. C 2011, 73, 65–74. [Google Scholar]
- Dinç, İ.; Dinç, S.; Sigdel, M.; Sigdel, M.S.; Aygün, R.S.; Pusey, M.L. DT-Binarize: A decision tree based binarization for protein crystal images. In Emerging Trends in Image Processing, Computer Vision and Pattern Recognition; Anonymous, Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 183–199. [Google Scholar]
- Sagayam, K.M.; Bruntha, P.M.; Sridevi, M.; Sam, M.R.; Kose, U.; Deperlioglu, O. A cognitive perception on content-based image retrieval using an advanced soft computing paradigm. In Advanced Machine Vision Paradigms for Medical Image Analysis; Anonymous, Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 189–211. [Google Scholar]
- Guo, X.; Vavilov, V. Pulsed Thermographic Evaluation of Disbonds in the Insulation of Solid Rocket Motors made of Elastomers. Polym. Test. 2015, 45, 31–40. [Google Scholar] [CrossRef]
- Shrestha, R.; Park, J.; Kim, W. Application of Thermal Wave Imaging and Phase Shifting Method for Defect Detection in Stainless Steel. Infrared Phys. Technol. 2016, 76, 676–683. [Google Scholar] [CrossRef]
- Shrestha, R.; Kim, W. Non-Destructive Testing and Evaluation of Materials using Active Thermography and Enhancement of Signal to Noise Ratio through Data Fusion. Infrared Phys. Technol. 2018, 94, 78–84. [Google Scholar] [CrossRef]
Defect ID | SNR | |||
---|---|---|---|---|
Raw Image | Gaussian | Window Averaging | Median | |
A1 | 39.65 | 39.96 | 39.95 | 39.89 |
A2 | 39.58 | 40.23 | 40.04 | 39.67 |
A3 | 38.21 | 38.21 | 38.32 | 38.12 |
A4 | 39.87 | 40.56 | 40.52 | 39.91 |
B1 | 38.68 | 39.73 | 39.44 | 38.60 |
B2 | 38.29 | 39.53 | 39.04 | 38.32 |
B3 | 39.15 | 40.03 | 39.80 | 39.26 |
B4 | 38.21 | 39.46 | 38.92 | 38.21 |
C1 | 40.22 | 40.70 | 40.65 | 40.37 |
C2 | 39.87 | 40.44 | 40.25 | 39.89 |
C3 | 38.91 | 38.99 | 39.15 | 39.32 |
C4 | 40.29 | 40.74 | 40.65 | 40.33 |
D1 | 38.02 | 39.49 | 39.05 | 38.34 |
D2 | - | - | - | - |
D3 | 38.18 | 39.49 | 39.09 | 38.34 |
D4 | 37.91 | 39.49 | 39.06 | 38.40 |
Defect ID | Actual | Estimated | Error % | ||
---|---|---|---|---|---|
Size (mm) | Depth (mm) | Size (Pixels) | Size (mm) | ||
A1 | 16 | 2 | 41.32 | 15.50 | 3.13 |
A2 | 4 | 2 | 10.72 | 4.02 | 0.50 |
A3 | 8 | 2 | 24.76 | 9.28 | 16.00 |
A4 | 12 | 2 | 29.70 | 11.14 | 7.17 |
B1 | 16 | 5 | 30.11 | 11.29 | 29.44 |
B2 | 4 | 5 | 7.64 | 2.87 | 28.25 |
B3 | 8 | 5 | 14.60 | 5.48 | 31.50 |
B4 | 12 | 5 | 23.65 | 8.87 | 26.08 |
C1 | 16 | 3 | 44.30 | 16.61 | 3.81 |
C2 | 4 | 3 | 12.08 | 4.53 | 13.25 |
C3 | 8 | 3 | 25.76 | 9.66 | 20.75 |
C4 | 12 | 3 | 32.71 | 12.27 | 2.25 |
D1 | 16 | 4 | 20.14 | 7.55 | 52.81 |
D2 | 4 | 4 | - | - | - |
D3 | 8 | 4 | 11.02 | 4.13 | 43.38 |
D4 | 12 | 4 | 11.20 | 4.20 | 65.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.J.; Shrestha, A.; Sapkota, E.; Pokharel, A.; Pandey, S.; Kim, C.S.; Shrestha, R. A Study on the Effectiveness of Spatial Filters on Thermal Image Pre-Processing and Correlation Technique for Quantifying Defect Size. Sensors 2022, 22, 8965. https://doi.org/10.3390/s22228965
Kim HJ, Shrestha A, Sapkota E, Pokharel A, Pandey S, Kim CS, Shrestha R. A Study on the Effectiveness of Spatial Filters on Thermal Image Pre-Processing and Correlation Technique for Quantifying Defect Size. Sensors. 2022; 22(22):8965. https://doi.org/10.3390/s22228965
Chicago/Turabian StyleKim, Ho Jong, Anuja Shrestha, Eliza Sapkota, Anwit Pokharel, Sarvesh Pandey, Cheol Sang Kim, and Ranjit Shrestha. 2022. "A Study on the Effectiveness of Spatial Filters on Thermal Image Pre-Processing and Correlation Technique for Quantifying Defect Size" Sensors 22, no. 22: 8965. https://doi.org/10.3390/s22228965
APA StyleKim, H. J., Shrestha, A., Sapkota, E., Pokharel, A., Pandey, S., Kim, C. S., & Shrestha, R. (2022). A Study on the Effectiveness of Spatial Filters on Thermal Image Pre-Processing and Correlation Technique for Quantifying Defect Size. Sensors, 22(22), 8965. https://doi.org/10.3390/s22228965