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Abstract: Thermal imaging plays a vital role in structural health monitoring of various materials and
provides insight into the defect present due to aging, deterioration, and fault during construction.
This study investigated the effectiveness of spatial filters during pre-processing of thermal images
and a correlation technique in post-processing, as well as exploited its application in non-destructive
testing and evaluation of defects in steel structures. Two linear filters (i.e., Gaussian and Window
Averaging) and a non-linear filter (i.e., Median) were implemented during pre-processing of a pulsed
thermography image sequence. The effectiveness of implemented filters was then assessed using
signal to noise ratio as a quality metric. The result of pre-processing revealed that each implemented
filter is capable of reducing impulse noise and producing high-quality images; additionally, when
comparing the signal to noise ratio, the Gaussian filter dominated both Window Averaging and
Median filters. Defect size was determined using a correlation technique on a sequence of pulsed
thermography images that had been pre-processed with a Gaussian filter. Finally, it is concluded that
the correlation technique could be applied to the fast measurement of defect size, even though the
accuracy may depend on the detection limit of thermography and defect size to depth ratio.

Keywords: thermal imaging; pulsed thermography; noise; spatial filtering; signal to noise ratio

1. Introduction

Image processing has now become a very highly demanded field of study and practice
providing solutions to various real-life applications and is useful in many areas, disciplines
and fields of art, and science and technology [1]. Due to the tremendous advancements
achieved in microsystem technologies of infrared detectors, electronics, and computer
science over the past few years, the application area of thermal imaging is growing fast in
both science and technology [2]. Thermal imaging, also known as Infrared Thermography
(IRT), is an optical measurement technique that deals with the acquisition and analysis
of thermal data using a non-contact, high-speed thermal camera. Infrared detectors are
the key to the IRT system, which detects the infrared radiation emitted by an object of
interest and exploits Stefan–Boltzmann’s law to obtain temperature [3]. Every machine
component and structure has a temperature range during normal operation. Defective
machinery parts and components, faulty power supply and loose connections lead to
abnormal temperature distribution and hence temperature is one of the best indicators of
structural health [4]. IRT nowadays is not just limited to structural health monitoring but
extends its application to R&D in various industries, including, nondestructive testing and
evaluation (NDT&E), material characterization, manufacturing quality assurance, energy
cost reduction, surveillance, night vision, agriculture, medical science and many more [5–8].
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Pulsed thermography (PT) is active thermography that integrates a thermal camera
with flash heating. As shown in Figure 1, the PT consists of an IR Camera, Flash Lamps,
Control Unit, Computer System, and a power supply. During the experiment, a short and
high-power thermal energy is applied to the sample’s surface being examined, and the
thermal response of the stimulated surface is observed in a transient state. The presence of
any flaws alters the diffusion rate, causing defects to appear as surface regions of different
temperatures when observing the surface temperature [9,10]. The detailed theory of PT can
be found in the literature [11–14].
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Figure 1. Schematic diagram of an experimental pulsed thermography inspection system.

The basic concept of PT appeared in the 1960s when W.J. Parker et al. of the U.S. Naval
Radiological Laboratory in California used the flash method to determine thermal diffusiv-
ity, heat capacity and thermal conductivity in a variety of materials [15]. Over the years,
many scholars from around the world contributed to establishing a solid theoretical foun-
dation and broadening its application areas. R. Monti and G. Mannara of the University of
Naples, Italy inspected the complex honeycomb space structures and were able to detect the
position of the defect and their size using PT [16]. V.P. Vavilov and R. Taylor of Tomsk Poly-
technic University, Russia used PT for the NDT&E of bonded structures [17]. R.L. Thomas
et al. of Wayne Institute University, USA used PT to detect corrosion and disbonding on
the B737 testbed aircraft [18]. Xavier P.V. Maldague et al. of University Laval, Canada used
PT for the NDT&E of carbon fiber reinforced plastic (CFRP) facings with aluminum honey-
comb sandwich structures [19]. Xavier P.V. Maldague together with V.P. Vavilov inspected
the defective aluminum specimen with internal and external corrosion, delaminations and
water between the two sheets using PT [20]. Ranjit Shrestha of Kathmandu University,
Nepal in collaboration with Wontae Kim of Kongju National University, South Korea and
Stefano Sfarra of University of L’Aquila, Italy evaluated the ancient marquetry sample
using PT [21]. Ranjit Shrestha and Wontae Kim evaluated the coating thickness [22,23] and
also detected the wall thinning defects in steel structures [24] using PT. Fulvio Mercuri
et al. from Università degli Studi di Roma Tor Vergata, Italy used PT to analyze repairs,
decorative elements, and casting faults on bronzes, to detect texts hidden or damaged in
ancient books/documents, and to characterize paint decorations [25]. Tomáš Kostroun and
Milan Dvořák of Czech Technical University, Prague tested the adhesive joints of the wing
spar caps made of a carbon composite using PT [26]. Ester D’Accardi et al. of Polytechnic
University of Bari, Italy used PT to detect flaws in additive manufacturing components [27].
Many studies have been conducted recently on PT for defect detection, particularly on
the estimation of defect depth followed by the improvement of signal to noise (SNR). C.
Deemer et al. from Argonne National Laboratory, USA developed the experimental PT
setup and discussed the peak difference time and peak slope time methods for determin-
ing the defect depth in continuous fiber ceramic composite components, concluding that



Sensors 2022, 22, 8965 3 of 12

peak-difference time depends on defect diameter, whereas peak-slope time appears to be
constant with respect to diameter [28]. Xavier P.V. Maldague et al. of University Laval,
Canada proposed pulse phase thermography (PPT) to investigate the high conductivity
test samples with deeper defects with less influence of optical characteristics and surface
infrared. It was also concluded that the experimental raw data is also affected by emissivity
variations, reflections from the environment, non-uniform surface heating, and surface
geometry sharp variations [11,13]. N. Rajic from Aeronautical and Maritime Research Lab-
oratory, Australia used conventional flash thermography and proposed a singular value
decomposition method based on principal component thermography (PCT) for NDT&E
of delamination in the composite laminate test sample and demonstrated the evidence
of a reduction in noise to a considerable extent with the high level of defect contrast [29].
S.M. Shepard et al. from Thermal Wave Imaging, Inc., USA proposed the thermal signal
reconstruction (TSR) technique for the processing of experimental PT data and detect the
flat bottom holes (FBH) defects in steel structure and concluded that the time derivative of
the reconstructed data detects the defect with high sensitivity at earlier times with better
SNR [30]. Yoonjae Chung et al. from Kongju National University, South Korea carried
out an experimental investigation and compared the effectiveness of TSR, PPT and PCT
methods in detecting the wall thinning defects in steel pipes. The results showed that TSR
improved defect detectability, detecting the maximum number of defects, PPT provided the
highest SNR, particularly for the deeper defects, and PCT provided the highest SNR for the
shallower defects [24]. Nick Rothbart et al. of Federal Institute for Materials Research and
Testing, Germany introduced a multi-parameter approach for calculating the POD for flash
thermography with a large variation of test equipment as well as of tested materials and
structures [31]. Haochen Liu from Cranfield University, UK proposed an automatic and
accurate defect profile reconstruction method for PT using deep learning neural network
and demonstrated its higher accurate and robust performance in sharp corners and edges
of irregular defect profiles, which are commonly difficult for traditional processing [32].

PT has been extensively studied for the estimation of defect depth, but it is also
vital to note that the estimation of defect size has gotten comparatively little attention in
the literature focusing only on threshold segmentation, edge extraction and temperature
profile line approach to obtain the pixel value of the defective areas [33–35]. Lihua Yuan
from Nanchang Hangkong University, China proposed maximum of standard deviation
of sensitive region method to measure the FBH defect size in PVC plate by combining
the threshold and edge extraction methods [36]. M.B. Saintey and D.P. Almond from
University of Bath, UK employed the full width at half maximum contrast method to
measure the size of the back drill hole [37]. Pengfei Zhu from Ningbo University, China
introduced the temperature integral method for the quantitative analysis of the FBH defect
size present in stainless steel plate and CFRP laminate [38]. Ranjit Shrestha et al. from
Kongju National University employed the temperature line profile method to measure
the size of FBH defect present in the stainless steel [39]. Ester D’Accardi et al. of the
Polytechnic University of Bari, Italy, proposed a new empirical procedure for estimating
FBHs and real defect size and depth in aluminum and glass fiber reinforced polymers by
establishing a linear correlation between defect contrasts and relative aspect ratios [40].
Slawomir Grys of the Czestochowa University of Technology, Poland proposed relative
incremental filtered contrast and filtered contrast methods for image segmentation and
estimate the lateral dimensions of subsurface flaws in a polymethylmethacrylate slab [41].
Nevertheless, estimating the defect size is never easy because of the substantial noise that is
present in the raw thermal data as a result of non-uniform heating and surface reflectivity.
Additionally, there is always a chance that the edge information of the defect area may
get blurred due to lateral temperature diffusion, making it difficult and very subjective to
select the best image containing defect information.

The most important point to note is that despite extensive research on the transform
domain for the post-processing of thermal images, the spatial domain for the pre-processing
of raw thermal images has received relatively less attention. Raw thermal image sequence
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captured during experimentation, acquisition, and transmission are frequently corrupted
by impulse noise, which can subsequently degrade the performance of post-processing
algorithms. As a result, it is necessary to preserve the image detail by an effective noise
removal method as a pre-processing step before using any subsequent image processing
algorithm. This paper focused on the investigation of standard spatial domain filters
during the pre-processing stage in the application for noise removal in thermal images.
Additionally, the performance of selected spatial filters was evaluated using SNR metrics.
Furthermore, the paper deals with the application of a correlation technique to estimate the
defect size during the post-processing of thermal images.

The remaining section of the study is structured as follows: In Section 2, a brief
overview of spatial filters, correlation technique, and signal to noise ratio is presented. The
details of the test sample and experiment are presented in Section 3. The outcomes and
analysis of each spatial filter and a correlation technique are covered in Section 4. Section 5
concludes by outlining the conclusions and prospective future research.

2. Background
2.1. Spatial Filters

Image denoising is a method of preserving image details, while removing as much
random noise as possible from the image. The denoising methods are mainly divided
into spatial domain and transform domain. Spatial domain filters operate the pixels on
the raw images with high processing speed and are currently the standard pre-processing
approach used before the post-processing of the image. The categories for spatial filters
include linear (convolution) filters, such as Gaussian filter and Window Averaging filter and
non-linear filters, such as Median filter. Through the years, traditional image processing has
adopted the Gaussian filter, Window Average filter, and Median filter as standard spatial
filters [42–45]

2.1.1. Gaussian Filter

It is a linear smoothing filter that chooses the weights according to the shape of
the Gaussian function. It is a kind of effective low-pass filter, especially to remove the
noises that are subject to normal distribution. The Gaussian filter works by using the 2D
distribution as a point-spread function. Gaussian kernel coefficients are sampled from the
2D Gaussian function and can be expressed by Equation (1) [46,47].

G(x, y) =
1

2πσ2 e
x2+y2

2σ2 (1)

where σ is the standard deviation of the distribution. The distribution is assumed to have a
mean of 0.

2.1.2. Window Averaging Filter

It is a method of smoothing images by reducing the amount of intensity variation
between neighboring pixels. It works by moving through the image pixel by pixel, replacing
each value with the average value of the neighboring pixel, including itself. Large filters
blur the image more. When the filter neighborhood straddles an edge, the filter will
interpolate new values for pixels on the edge and so it will blur that edge. This may be a
problem if sharp edges are required in the output [48].

2.1.3. Median Filter

It is one of the well-known order statistic filters that is particularly effective at removing
‘salt and pepper’, ‘random’ and ‘Gaussian’ noise, while preserving edges. It works by
moving through the image pixel by pixel, replacing each value with the median value of
the neighboring pixel. The pattern of neighbors is called the “window”, which slides, pixel
by pixel over the entire image pixel, over the entire image. The median is calculated by first
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sorting all the pixel values from the window into numerical order and then replacing the
pixel being considered with the middle/median pixel value [49,50].

2.2. Correlation Technique

The correlation technique seeks to reveal similarities in the temporal behavior of
temperature between a selected reference point and each image pixel. The correlation
image will then display correlation coefficient values based on pixels. The correlation
technique, which describes the similarity of two vectors, can be used to analyze a discrete
signal with N sample points as an N-dimensional vector. The correlation coefficient for
discrete signal x(n) and y(n), can be expressed by Equation (2) [51].

Pxy =
∑N−1

n=0 [x(n)− µx]
[
y(n)− µy

]
√

∑N−1
n=0 [x(n)− µx]

2 ∑N−1
n=0

[
y(n)− µy

]2
; −1 ≤ ρxy ≤ 1 (2)

where n designates the time point, µx and µy are the mean values of x(n) and y(n) re-
spectively. It can be assumed that x(n) represents the sound area and y(n) represents the
defective area.

Correlations involve two variables the first of which is the reference and the second
one is the variable to be compared to the reference. It denotes the strength and direction
of the linear relationship between a given temperature evolution reference and all of the
temperature evolution of the pixels across the specimen under examination. As a result, it
compiles the temporal information of a sequential image into a single one, similar to how
the Fourier transform compiles the information of many images recorded over a given time
period into a single resulting image.

2.3. Signal to Noise Ratio

Signal to noise ratio (SNR) is a measurement metric used to contrast two regions of
interest (ROI). The SNR specifically determines the contrast value in a defective area and
its neighborhood sound area in decibels [dB]. Two ROIs—one for the defective area and
the other for the nearby sound area—are chosen for this purpose. ROI in the defective area
will be regarded as “signal” (DROI), and ROI in the sound area will be regarded as “noise”
(SROI). Equation (3) enables the calculation of the SNR [52,53].

SNR = 20 log10

(
|DROImean − SROImean|

σ

)
(3)

where DROImean is the arithmetic mean of all the pixels inside the defective area; SROImean
is the arithmetic mean of all the pixels inside the sound area and σ is the standard deviation
of the pixels inside the sound region.

3. Methods and Materials

In this study, the source images are selected from the article [24]. The source image
includes the thermal data set where PT experimentation has been carried out over austenitic
stainless steel (SUS 316) sample embedded with artificially simulated FBH of different sizes
at varying depths. The sample’s schematic arrangement is depicted in Figure 2, where
FBHs in each column represent defects that vary in depth from the top to the bottom row
but have a constant diameter. Similar to this, each row’s FBHs depict defects that vary in
size from left to right, while maintaining a constant depth. To create a consistent emissive
surface, black KRYLON flat paint with an emissivity of 0.95 is coated on the sample’s front
surface. The sample was then excited by a flash lamp of 6400 W-s, developed by BALCAR,
France. The corresponding thermal response over the sample surface is captured with
FLIR SC655 thermal camera operating at 7.5–13 µm spectral range with a maximum spatial
resolution of 640 × 480 pixels, noise equivalent temperature difference (NETD) > 50 mk,
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spatial resolution (IFOV) 0.69 mrad, and accuracy ±2 ◦C. The frame rate of the thermal
camera was fixed to 50 Hz to record 250 thermograms during the experimentation.
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Figure 2. Schematic diagram of the test sample with geometry and position of artificial FBH defects
of various sizes and depths [24].

4. Results and Discussion

The total 250 thermal images with a spatial resolution of 640 × 480 pixels, acquired
by FLIR R&D software during experimentation were imported to MATLAB® R2020a.
Even though FLIR R&D has inbuilt features for the pre-processing of thermal images, all
preprocessing and post-processing were performed in MATLAB® R2020a.

4.1. Selection of ROI and Pre-Processing with Spatial Filters

The raw thermal images not only consist of the test sample but also the area outside
the sample (background) composed of highly noisy spectra and might hamper the good
performance of the processing methods. Hence, ROI of size 480 × 480 pixels around the
sample boundary is selected to remove the background information and a substantial
saving of computing time. Then, the spatial filters previously described in Section 2.1 with
kernel size 3 × 3 were implemented.

Figure 3 demonstrates the resultant images from the raw thermal image. Among
250 thermal images, the image at time 0.06 s was considered for the analysis because the
maximum number of defects are detected with minimum noise. As illustrated in Figure 3,
the filters produced high-quality, acceptable results. To assess the effectiveness of each
implemented filter, the SNR of a particular defect is determined by calculating the ratio
of the absolute difference between the mean of the defect area and adjacent sound area to
the standard deviation of the sound area using Equation (3). For each defect, two ROIs of
6 × 6 pixels were considered, one in the center of the defect and one in the nearby sound
area, as depicted in Figure 4. ROI in the defect area was regarded as ‘signal’ while in the
sound area was regarded as ‘noise’.
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Figure 3. Comparison between the raw image and the filtered images, (a) Raw pulsed thermal
image from the front surface at time 0.06 s [Frequency = 50 Hz, number of frames = 250, truncation
window = 5 s], (b) Image after applying Gaussian filter of Kernel Size 3 × 3 and Sigma 0.85, (c) Image
after applying Window Average filter of Kernel Size 3 × 3, and (d) Image after applying Median filter
of Kernel Size 3 × 3.

Table 1 compares the SNR for each defect in raw and filtered images. As shown in
Table 1, the Gaussian and Window Averaging filters improved the SNR of all 15 detected
defects, whereas the Median filter improved the SNR of 12 defects, while maintaining the
SNR of a single defect and decreasing the SNR of two defects. In addition, the Gaussian
filter dominated the Window Averaging and Median filters in terms of SNR. For instance,
in Table 1 for the shallowest and the largest defect A1; the raw thermal image had SNR of
39.65 dB; the Gaussian filtered image had SNR of 39.96 dB, which is an increment of 0.78%;
Window Averaging filtered image had SNR of 39.95 dB, which is an increment of 0.76%;
Median filtered image had SNR of 39.85 dB, which is an increment by 0.61%. Similarly,
for the deepest and smallest defect B2, the raw thermal image had SNR of 38.29 dB; the
Gaussian filtered image had SNR of 39.53 dB, which is an increment of 3.24%; Window
Averaging filtered image had SNR of 39.04 dB, which is an increment of 1.96%; Median
filtered image had SNR of 38.32 dB, which is an increment by 0.08%.
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enclosed area represents the defective areas, while the white dashed line enclosed area represents the
sound area.

Table 1. FBH defects and its corresponding SNR metric with respect to implemented filters.

Defect ID

SNR

Raw Image Gaussian Window
Averaging Median

A1 39.65 39.96 39.95 39.89

A2 39.58 40.23 40.04 39.67

A3 38.21 38.21 38.32 38.12

A4 39.87 40.56 40.52 39.91

B1 38.68 39.73 39.44 38.60

B2 38.29 39.53 39.04 38.32

B3 39.15 40.03 39.80 39.26

B4 38.21 39.46 38.92 38.21

C1 40.22 40.70 40.65 40.37

C2 39.87 40.44 40.25 39.89

C3 38.91 38.99 39.15 39.32

C4 40.29 40.74 40.65 40.33

D1 38.02 39.49 39.05 38.34

D2 - - - -

D3 38.18 39.49 39.09 38.34

D4 37.91 39.49 39.06 38.40
Note: The symbol ‘-’ is the representation of non-detected defects.

The most significant point to be made is that defects with Di indices are closer to
surfaces than defects with Bi indices. This should lead to a higher SNR, according to the
results so far. We suspected that this was due to the use of a single lamp, which was our
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limitation in this study, as well as non-uniform heating because the lamp was primarily
focused on the center of the sample.

4.2. Post-Processing with a Correlation Technique

The PT image sequence after pre-processing with Gaussian filter was then processed
to obtain the correlation image. Figure 5a shows the correlation image obtained using
Equation (2), where thermal profiles of each pixel have been cross-correlated with a ref-
erence profile and correlation coefficient contrast due to depth-dependent delay is used
for defect detection. To measure the size of each defect, imfindcircles, a special function in
MATLAB® R2020a was used, which detects the diameter of defects as shown in Figure 5b
and provides the defect size in pixel unit. Then, the mapping of pixel units in the actual
unit was done through spatial calibration. Table 2 shows the errors in the estimation of
defect size, while processing a PT image sequence using the correlation technique. As
shown in Table 2, the error percentage varies with defect depth for the same defect size. It is
also revealed that as the defect size to depth ratio increases, the error percentage decreases
in the majority of the cases. For example, in Table 2, for the defect of the same size of 16
mm; defect A1 with a depth of 2 mm was detected with an error of 3.13%; defect C3 with a
depth of 3 mm was detected with an error of 3.81%; defect D1 with a depth of 6 mm was
detected with an error of 52.81%; and defect B1 with a depth 5 mm was detected with an
error of 29.44%.
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Figure 5. Resultant images using correlation technique, (a) Original correlation image and
(b) correlation image with detected defect diameter.

Table 2. Estimation of defect size based on correlation technique and comparison to actual size.

Defect ID
Actual Estimated

Error %
Size (mm) Depth (mm) Size (Pixels) Size (mm)

A1 16 2 41.32 15.50 3.13

A2 4 2 10.72 4.02 0.50

A3 8 2 24.76 9.28 16.00

A4 12 2 29.70 11.14 7.17

B1 16 5 30.11 11.29 29.44

B2 4 5 7.64 2.87 28.25

B3 8 5 14.60 5.48 31.50

B4 12 5 23.65 8.87 26.08
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Table 2. Cont.

Defect ID
Actual Estimated

Error %
Size (mm) Depth (mm) Size (Pixels) Size (mm)

C1 16 3 44.30 16.61 3.81

C2 4 3 12.08 4.53 13.25

C3 8 3 25.76 9.66 20.75

C4 12 3 32.71 12.27 2.25

D1 16 4 20.14 7.55 52.81

D2 4 4 - - -

D3 8 4 11.02 4.13 43.38

D4 12 4 11.20 4.20 65.00
Note: Symbol ‘-’ is the representation of non-detected defects.

5. Conclusions and Future Works

In this study, a pulsed thermography image sequence aimed at detecting wall thinning
defects in a steel structure was pre-processed with the three standard spatial filters before
being processed with a correlation technique to determine the size of the defect. The
presented results demonstrated that using spatial filters during the pre-processing stage
can help to reduce impulse noise and to improve image quality. The performance evaluation
of each spatial filter with respect to signal to noise ratio quality metric confirmed that the
Gaussian filter is more effective than Window Average and Median filters. Furthermore, it
is also confirmed that the correlation technique can be used to quickly estimate defect size,
though the accuracy may be affected by the detection limit of pulsed thermography and
defect size to depth ratio.

Future works will focus on the detection limit of pulsed thermography as well as the
effects of defect depth on the estimation of defect size.
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