Development of Three-Axis Fibre-Optic Seismograph for Direct and Autonomous Monitoring of Rotational Events with Perspective of Historical Review
Abstract
:1. Introduction
2. Systems Constructed at the Institute of Applied Physics at Military University of Technology, Poland
3. Construction of Three-Axis Fibre-Optic Seismograph—FOS6
4. Calculation of the Theoretical Sensitivity of Particular Sensor Loop
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahn, A.Y.E.; Takikawa, H.; Maly, E.; Bostrom, A.; Kuriyama, S.; Matsubara, H.; Izumi, T.; Torayashiki, T.; Imamura, F. Perception of earthquake risks and disaster prevention awareness: A comparison of resident surveys in Sendai, Japan and Seattle, WA, USA. IJDRR 2021, 66, 102624. [Google Scholar] [CrossRef]
- Goda, K.; Rossetto, T.; Mori, N.; Tesfamariam, S. Editorial: Mega Quakes: Cascading Earthquake Hazards and Compounding Risks. Front. Built Environ. 2018, 4, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Wu, Y.; Zhu, Z.; Ren, K.; Wei, Q.; Wu, W.; Zhang, H. Investigating the Role of Earthquakes on the Stability of Dangerous Rock Masses and Rockfall Dynamics. Front. Earth Sci. 2022, 9, 824889. [Google Scholar] [CrossRef]
- Shearer, P.M.; Stark, P.B. Global risk of big earthquakes has not recently increased. Proc. Natl. Acad. Sci. USA 2012, 109, 717–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koketsu, K. Ground Motion Seismology; Springer Nature: Singapore, 2021; pp. 1–30. [Google Scholar]
- Sollberger, D.; Igel, H.; Schmelzbach, C.; Edme, P.; Van Manen, D.J.; Bernauer, F.; Yuan, S.; Wassermann, J.; Schreiber, U.; Robertsson, J.O.A. Seismological Processing of Six Degree-of-Freedom Ground-Motion Data. Sensors 2020, 20, 6904. [Google Scholar] [CrossRef] [PubMed]
- Bernauer, F.; Behnen, K.; Wassermann, J.; Egdorf, S.; Igel, H.; Donner, S.; Stammler, K.; Hoffmann, M.; Edme, P.; Sollberger, D.; et al. Rotation, Strain, and Translation Sensors Performance Tests with Active Seismic Sources. Sensors 2021, 21, 264. [Google Scholar] [CrossRef]
- Bernauer, M.; Fichtner, A.; Igel, H. Reducing nonuniqueness in finite source inversion using rotational ground motions. J. Geophys. Res. Solid Earth 2014, 119, 4860–4875. [Google Scholar] [CrossRef]
- Donner, S.; Bernauer, M.; Igel, H. Inversion for seismic moment tensors combining translational and rotational ground motions. Geophys. J. Int. 2016, 207, 562–570. [Google Scholar] [CrossRef] [Green Version]
- Igel, H.; Cochard, A.; Wassermann, J.; Flaws, A.; Schreiber, U.; Velikoseltsev, A.; Dinh, N.P. Broad-band observations of earthquake-induced rotational ground motions. Geophys. J. Int. 2007, 168, 182–196. [Google Scholar] [CrossRef] [Green Version]
- Mutke, G.; Lurka, A.; Zembaty, Z. Prediction of rotational ground motion for mining-induced seismicity—Case study from Upper Silesian Coal Basin, Poland. Eng. Geol. 2020, 276, 105767. [Google Scholar] [CrossRef]
- Wassermann, J.; Wietek, A.; Hadziioannou, C.; Igel, H. Toward a Single-Station Approach for Microzonation: Using Vertical Rotation Rate to Estimate Love-Wave Dispersion Curves and Direction Finding. BSSA 2016, 106, 1316–1330. [Google Scholar] [CrossRef]
- Zembaty, Z.; Mutke, G.; Nawrocki, D.; Bobra, P. Rotational Ground-Motion Records from Induced Seismic Events. Seismol. Res. Lett. 2016, 88, 13–22. [Google Scholar] [CrossRef]
- Teisseyre, K.P.; Dudek, M.; Jaroszewicz, L.R.; Kurzych, A.T.; Stempowski, L. Study of Rotational Motions Caused by Multiple Mining Blasts Recorded by Different Types of Rotational Seismometers. Sensors 2021, 21, 4120. [Google Scholar] [CrossRef]
- Brokešová, J.; Málek, J.; Vackář, J.; Bernauer, F.; Wassermann, J.; Igel, H. Rotaphone-CY: The Newest Rotaphone Model Design and Preliminary Results from Performance Tests with Active Seismic Sources. Sensors 2021, 21, 562. [Google Scholar] [CrossRef] [PubMed]
- EMCORE. Available online: https://emcore.com/product-category/navigation-inertial-sensing/ (accessed on 3 October 2022).
- EENTEC. Available online: http://www.eentec.com/R-1_data_new.htm (accessed on 30 September 2022).
- Igel, H.; Schreiber, K.; Gebauer, A.; Bernauer, F.; Egdorf, S.; Simonelli, A.; Liny, C.J.; Wassermann, J.; Donner, S.; Hadziioannou, C.; et al. ROMY: A Multi-Component Ring Laser for Geodesy and Geophysics. Geophys. J. Int. 2021, 225, 684–698. [Google Scholar] [CrossRef]
- Felix, B.; Wassermann, J.; Guattari, F.; Frenois, A.; Bigueur, A.; Gaillot, A.; Toldi, E.; Damien, P.; Schreiber, U.; Igel, H. BlueSeis3A: Full Characterization of a 3C Broadband Rotational Seismometer. Seismol. Res. Lett. 2018, 89, 620–629. [Google Scholar] [CrossRef]
- Jaroszewicz, L.R.; Kurzych, A.; Krajewski, Z.; Marć, P.; Kowalski, J.K.; Bobra, P.; Zembaty, Z.; Sakowicz, B.; Jankowski, R. Review of the Usefulness of Various Rotational Seismometers with Laboratory Results of Fibre-Optic Ones Tested for Engineering Applications. Sensors 2016, 16, 2161. [Google Scholar] [CrossRef] [Green Version]
- Fink, M.; Steinlechner, F.; Handsteiner, J.; Dowling, J.; Scheidl, T.; Ursin, R. Entanglement-enhanced optical gyroscope. NJP 2019, 21, 053010. [Google Scholar] [CrossRef]
- Culshaw, B.; Kersey, A. Fiber-Optic Sensing: A Historical Perspective. JLT 2008, 26, 26–1078. [Google Scholar] [CrossRef]
- Sagnac, G. L’ether lumineux demontre par l’effet du vent relatif d’Etherdanus un interferometre en rotation uniforme. C. R. L’acad. Sci. 1913, 95, 708–710. [Google Scholar]
- Vali, V.; Shorthill, R.W. Fiber ring interferometer. Appl. Opt. 1976, 15, 1099–1100. [Google Scholar] [CrossRef] [PubMed]
- Szelmanowski, A.; Jaroszewicz, L.R. Usefulness of the fiber-optic Sagnac interferometer for stability analysis of slow-speed rotation test-stands. Interf. Appl. 1999, 3745, 324–330. [Google Scholar]
- Jaroszewicz, L.R.; Krajewski, Z. Possibility of fiber-optic rotational seismometer design. In Proceedings of the Seventh International Symposium on Laser Metrology Applied to Science, Industry, and Everyday Life, Novosibirsk, Russia, 29 July 2002; Volume 4900, pp. 416–423. [Google Scholar]
- Jaroszewicz, L.R.; Krajewski, Z. FORS-II as a optimum sensor for detection of rotational seismic events. In Proceedings of the Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments II, Wilga, Poland, 22 July 2004; Volume 5484. [Google Scholar]
- Jaroszewicz, L.R.; Krajewski, Z.; Kowalski, H.; Mazur, G.; Zinówko, P.; Kowalski, J. AFORS autonomous fibre-optic rotational seismograph: Design and application. Acta Geophys. 2011, 59, 578–596. [Google Scholar] [CrossRef]
- Kurzych, A.; Jaroszewicz, L.R.; Kowalski, J.K.; Sakowicz, B. Investigation of rotational motion in a reinforced concrete frame construction by a fiber optic gyroscope. Opto-Electron. Rev. 2020, 28, 69–73. [Google Scholar]
- Lefèvre, H.C.; Martin, P.; Morisse, J.; Simonpietri, P.; Vivenot, P.; Arditty, H.J. High Dynamic Range Fiber Gyro with All-Digital Processing. SPIE Proc. 1990, 1367, 72–80. [Google Scholar] [CrossRef]
- Lefevre, H.C. Fiber-Optic Gyroscope, 2nd ed.; Artech House: Norwood, MA, USA, 2014; pp. 1–391. [Google Scholar]
- IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros; Institute of Electrical and Electronics Engineers: New York, NY, USA, 1998.
- Nato Research and Technology Organization Neuilly-Sur-Seine (France). Optical Gyros and Their Application (Gyroscopes Optiques et Leurs Applications); Loukianov, D., Rodloff, R., Sorg, H., Stieler, B., Eds.; Canada Communication Group Inc.: Quebec, QC, Canada, 1999; pp. 7–11. [Google Scholar]
- Pérez, R.J.; Álvarez, I.; Enguita, J.M. Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG) on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications. Sensors 2016, 16, 604. [Google Scholar] [CrossRef]
Years | Name of the System | Parameters | Picture |
---|---|---|---|
1998 | GS-13P | Ωmin: 3.49 × 10−3 rad/s SL: 380 m Hi-Bi fibre, Radius: 0.1 m | |
2001 | FORS-I | Ωmin: 2.2 × 10−6 rad/s Ωmax: 4.8 × 10−4 rad/s SL: 400 m PANDA, Radius: 0.1 m | |
2004–2010 | FORS-II (FOS1), AFORS (FOS2) | FORS-II: Ωmin: 4.2 × 10−8 rad/s Ωmax: 4.8 × 10−4 rad/s; SL: 11,000 m SMF Radius: 0.34 m; AFORS: Ωmin: 4 × 10−9 rad/s, Ωmax: 6.4∙10−3 rad/s SL: 15,000 m SMF, Radius: 0.34 m | |
2015 | FOSREM (FOS3 & FOS4) | Ωmin: 2 × 10−8 rad/s, Ωmax: few rad/s SL: 5000 m SMF, Radius: 0.125 m | |
2018 | FOS5 | Ωmin: 7 × 10−8 rad/s, Ωmax: 10 rad/s SL: 5000 m SMF, Radius: 0.125 m |
Axis | Length of the Optical Fibre [m] | Coil Diameter [m] | Coil Losses [dB] | Total Optical Losses [dB] | ARW Equation (2) [nrad/s] | ARW Equation (3) [nrad/s] |
---|---|---|---|---|---|---|
X | 6 009 | 2.044 | 17.52 | 2.25 | 2.21 | |
Y | 6 021 | 0.215 | 1.914 | 16.89 | 2.08 | 2.06 |
Z | 6 084 | 1.941 | 16.68 | 2.03 | 2.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurzych, A.T.; Jaroszewicz, L.R.; Kowalski, J.K. Development of Three-Axis Fibre-Optic Seismograph for Direct and Autonomous Monitoring of Rotational Events with Perspective of Historical Review. Sensors 2022, 22, 8902. https://doi.org/10.3390/s22228902
Kurzych AT, Jaroszewicz LR, Kowalski JK. Development of Three-Axis Fibre-Optic Seismograph for Direct and Autonomous Monitoring of Rotational Events with Perspective of Historical Review. Sensors. 2022; 22(22):8902. https://doi.org/10.3390/s22228902
Chicago/Turabian StyleKurzych, Anna T., Leszek R. Jaroszewicz, and Jerzy K. Kowalski. 2022. "Development of Three-Axis Fibre-Optic Seismograph for Direct and Autonomous Monitoring of Rotational Events with Perspective of Historical Review" Sensors 22, no. 22: 8902. https://doi.org/10.3390/s22228902
APA StyleKurzych, A. T., Jaroszewicz, L. R., & Kowalski, J. K. (2022). Development of Three-Axis Fibre-Optic Seismograph for Direct and Autonomous Monitoring of Rotational Events with Perspective of Historical Review. Sensors, 22(22), 8902. https://doi.org/10.3390/s22228902