Critical Vibration and Control of the Maglev High-Speed Motor Based on μ–Synthesis Control
Abstract
:1. Introduction
2. Modeling of the Maglev High-Speed Motor System
2.1. System Configuration
2.2. Modeling of AMB
2.3. Flexible Rotor Modeling and Order Reduction
2.4. Modeling of Electrical Modules
3. μ–Synthesis Control Design
3.1. Modal Frequency Uncertainty
3.2. Weighting Functions Design
3.3. Controller Synthesis and Order Reduction
4. Experimental Platform and Verification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, C.A.; Sun, F.; Jin, J.J.; Tang, J.H.; Xu, F.C.; Li, Q.; Oka, K. Analysis of Quasi-Zero Power Characteristic for a Permanent Magnetic Levitation System With a Variable Flux Path Control Mechanism. IEEE-ASME Trans. Mech. 2021, 26, 437–447. [Google Scholar] [CrossRef]
- Zhou, R.; Yan, M.Y.; Sun, F.; Jin, J.J.; Li, Q.; Xu, F.C.; Zhang, M.; Zhang, X.Y.; Nakano, K. Experimental validations of a magnetic energy-harvesting suspension and its potential application for self-powered sensing. Energy 2022, 239, 122205. [Google Scholar] [CrossRef]
- Sun, F.; Jin, J.; Oka, K. Permanent Magnetic Suspension System—Principle, Model, Simulation and Experiment; Science Press: Beijing, China, 2018. [Google Scholar]
- Jian, Z.; Huachun, W.; Weiyu, W.; Kezhen, Y.; Yefa, H.; Xinhua, G.; Chunsheng, S. Online unbalance compensation of a maglev rotor with two active magnetic bearings based on the LMS algorithm and the influence coefficient method. Mech. Syst. Signal Process. 2022, 166, 108460. [Google Scholar] [CrossRef]
- Maslen, E.H.; Schweitzer, G.; Bleuler, H.; Cole, M.; Traxler, A. Magnetic Bearings—Theory, Design, and Application to Rotating Machinery; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Dietz, D.; Messager, G.; Binder, A. 1kW/60,000min−1 bearingless PM motor with combined winding for torque and rotor suspension. IET Electr. Power Appl. 2018, 12, 1090–1097. [Google Scholar] [CrossRef]
- Yektanezhad, A.; Hosseini, S.A.A.; Tourajizadeh, H.; Zamanian, M. Vibration Analysis of Flexible Shafts with Active Magnetic Bearings. IJST-Trans. Mech. Eng. 2020, 44, 403–414. [Google Scholar] [CrossRef]
- Karimulla, S.; Dutta, B.K.; Gouthaman, G. Experimental and Analytical Investigation of Short Squeeze-Film Damper (SFD) Under Circular-Centered Orbit (CCO) Motion. J. Vib. Eng. Technol. 2020, 8, 215–224. [Google Scholar] [CrossRef]
- Chen, H.Z.; Hou, L.; Chen, Y.S.; Yang, R. Dynamic characteristics of flexible rotor with squeeze film damper excited by two frequencies. Nonlinear Dynam 2017, 87, 2463–2481. [Google Scholar] [CrossRef]
- Xu, Q.; Niu, J.K.; Yao, H.L.; Zhao, L.C.; Wen, B.C. Nonlinear dynamic behavior and stability of a rotor/seal system with the dynamic vibration absorber. Adv. Mech. Eng. 2019, 11, 1687814018819578. [Google Scholar] [CrossRef] [Green Version]
- Ghasabi, S.A.; Shahgholi, M.; Arbabtafti, M. Time-delayed control of a continuous flexible rotor via the saturation phenomenon. Wave Random Complex 2022, 1–22. [Google Scholar] [CrossRef]
- Alam, M.S.; Tokhi, M.O. Design of a command shaper for vibration control of flexible systems: A genetic algorithm optimisation approach. J. Low Freq. Noise Vib. Act. Control. 2007, 26, 295–310. [Google Scholar] [CrossRef] [Green Version]
- Tang, E.Q.; Han, B.C.; Zhang, Y. Optimum Compensator Design for the Flexible Rotor in Magnetically Suspended Motor to Pass the First Bending Critical Speed. IEEE Trans. Ind. Electron. 2016, 63, 343–354. [Google Scholar] [CrossRef]
- Tang, E.Q.; Fang, J.C.; Han, B.C. Active Vibration Control of the Flexible Rotor in High Energy Density Magnetically Suspended Motor With Mode Separation Method. J. Eng. Gas Turbines Power-Trans. Asme 2015, 137, GTP-14-1573. [Google Scholar] [CrossRef]
- Zheng, S.Q.; Li, H.T.; Peng, C.; Wang, Y.G. Experimental Investigations of Resonance Vibration Control for Noncollocated AMB Flexible Rotor Systems. IEEE Trans. Ind. Electron. 2017, 64, 2226–2235. [Google Scholar] [CrossRef]
- Ran, S.L.; Hu, Y.F.; Wu, H.C.; Cheng, X. Active vibration control of the flexible high-speed rotor with magnetic bearings via phase compensation to pass critical speed. J. Low Freq. Noise Vib. Act. Control. 2019, 38, 633–646. [Google Scholar] [CrossRef] [Green Version]
- Ran, S.L.; Hu, Y.F.; Wu, H.C. Design, modeling, and robust control of the flexible rotor to pass the first bending critical speed with active magnetic bearing. Adv. Mech. Eng. 2018, 10, 1687814018757536. [Google Scholar] [CrossRef]
- Long, Y.; Xie, Z.; Xu, X. H∞ robust control strategy for an active magnetic bearing. J. Vib. Shock. 2013, 32, 115–120. [Google Scholar]
- Zhou, K.; Doyle, J.C.; Glover, K. Robust and Optimal Control; Prentice Hall: Upper Saddle River, NJ, USA, 1996. [Google Scholar]
- Zhou, J.; Zheng, S.; Han, B. Application of μ synthesis to the control of active magnetic bearings with parametric uncertainty. In Proceedings of the 2017 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, Australia, 11–14 August 2017; pp. 1–5. [Google Scholar]
- Mushi, S.E.; Lin, Z.; Allaire, P.E. Stability Analysis for a Flexible Rotor on Active Magnetic Bearings subject to Aerodynamic Loads. In Proceedings of the 12th International Symposium on Magnetic Bearings, Wuhan, China, 21–24 August 2010; pp. 583–589. [Google Scholar]
- Ran, S.; Hu, Y.; Wu, H.; Cheng, X. Resonance Vibration Control for AMB Flexible Rotor System Based on µ-Synthesis Controller. Math. Probl. Eng. 2018, 2018, 4362101. [Google Scholar] [CrossRef] [Green Version]
- Hoa, L.K.; Vinh, P.V.; Duc, N.D.; Trung, N.T.; Son, L.T.; Thom, D.V. Bending and free vibration analyses of functionally graded material nanoplates via a novel nonlocal single variable shear deformation plate theory. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 3641–3653. [Google Scholar] [CrossRef]
- Thai, L.M.; Luat, D.T.; Phung, V.B.; Minh, P.V.; Thom, D.V. Finite element modeling of mechanical behaviors of piezoelectric nanoplates with flexoelectric effects. Arch. Appl. Mech. 2022, 92, 163–182. [Google Scholar] [CrossRef]
- Preumont, A. Rotor Dynamics. In Twelve Lectures on Structural Dynamics; Preumont, A., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 217–246. [Google Scholar]
- Maslen, E.H.; Sawicki, J.T. Mu-synthesis for magnetic bearings: Why use such a complicated tool. In Proceedings of the 2007 ASME International Mechanical Engineering Congress and Exposition, Seattle, WA, USA, 11–15 November 2007; pp. 1103–1112. [Google Scholar]
- ISO 14839-3; Mechanical Vibration—Vibration of Rotating Machinery Equipped with Active Magnetic Bearings—Part 3: Evaluation of Stability Margin. ISO: Geneva, Switzerland, 2006.
Parameter | Value |
---|---|
Rotor length | 0.93 m |
Rotor mass | 18.14 kg |
Rotor moment of inertia | 0.0167 kg·m2 |
Air gap | 0.5 mm |
Protection gap | 0.25 mm |
Bias current | 2.5 A |
Control frequency | 20 kHz |
DC bus voltage | 70 V |
Switching frequency | 25 kHz |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Yang, K.; Wu, H.; Guo, X.; Wang, N. Critical Vibration and Control of the Maglev High-Speed Motor Based on μ–Synthesis Control. Sensors 2022, 22, 8692. https://doi.org/10.3390/s22228692
Hu Y, Yang K, Wu H, Guo X, Wang N. Critical Vibration and Control of the Maglev High-Speed Motor Based on μ–Synthesis Control. Sensors. 2022; 22(22):8692. https://doi.org/10.3390/s22228692
Chicago/Turabian StyleHu, Yefa, Kezhen Yang, Huachun Wu, Xinhua Guo, and Nianxian Wang. 2022. "Critical Vibration and Control of the Maglev High-Speed Motor Based on μ–Synthesis Control" Sensors 22, no. 22: 8692. https://doi.org/10.3390/s22228692
APA StyleHu, Y., Yang, K., Wu, H., Guo, X., & Wang, N. (2022). Critical Vibration and Control of the Maglev High-Speed Motor Based on μ–Synthesis Control. Sensors, 22(22), 8692. https://doi.org/10.3390/s22228692