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Abstract: The Maglev motor has the characteristics of high-speed and high-power density, and is
widely used in compressors, molecular pumps and other high-speed rotating machinery. With the
requirements of miniaturization and high speed of rotating machinery, the rotor of the maglev motor
will operate above the bending critical speed, and the critical vibration control of the flexible rotor is
facing challenges. In order to solve the problem of the critical vibration suppression of the maglev
high-speed motor, the system model of the maglev motor is established, the rotordynamics of the
flexible rotor are analyzed and the rotor model is modal truncated to reduce the order. Then, the
µ–controller is designed, and the weighting functions are designed to deal with the modal uncertainty.
Finally, an experimental platform of the maglev motor with the flexible rotor is built to verify the
effect of the µ–control on the suppression of the critical vibration of the maglev rotor.

Keywords: high-speed motor; magnetic bearing; critical speed; vibration suppression

1. Introduction

Active control of the magnetic field can support objects, and typical applications can
be divided into two categories: maglev train [1–3] and active magnetic bearing (AMB) [4].
AMB has the unique advantages of high speed, no friction, and no lubrication, and has
been more and more widely used in various industrial fields [5]. Especially for high-
speed motors, as shown in Figure 1, AMBs eliminate friction and lubrication, reduce rotor
vibration, and are more advantageous to the development of motors towards high-speed
and high-power-density [6]. However, the rotor may need to operate above the bending
critical frequency due to structural limitations in some applications. During the running
up process of the rotor, the rotor must pass through the critical frequency, and because of
the existence of unbalanced mass, the rotor system will have severe vibration, which will
seriously affect the stable operation of the high-speed motor [7].

The critical vibration suppression of the flexible rotor has always been a research
highlight in the field of rotating machinery such as high-speed motors. In the rotor system
supported by mechanical bearings, many scholars use the squeeze film damper with
elastic ring [8,9] and dynamic vibration absorber [10] to suppress the critical vibration.
Ghasabi [11] applied piezoelectric fibers as sensors and actuators and implemented a
nonlinear saturation-based controller with time delays to mitigate the critical vibrations
of a continuous spinning shaft. Alam [12] designed a command-shaping technique for
vibration control of a flexible twin rotor system.

Though for the rotor supported by the AMBs, the active controllability characteristic
can be utilized with an appropriate control algorithm to suppress vibration.
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Figure 1. Structure of a high-speed and high-power-density maglev motor.

Some scholars achieved control of the flexible mode of the rotor by adding a filter based
on PID (proportional-integral-derivative) control. Tang [13] used a phase lead compensator
and an optimal damping compensator for the 315 kW maglev motor, and in the experiment,
the minimum rotor resonance response was obtained when crossing the first bending critical
speed, and the maximum damping was provided when the power amplifier current was
minimum. Tang [14] also proposed a mode separation method for the 100 kW maglev motor,
which separated the first and second bending modes, and reconstructed the displacement
near the first bending mode. The critical speed was successfully passed through with a
small current in the experiment. Zheng [15] aimed at the resonance vibration problem
of a 10 kW maglev centrifugal compressor with non-collocated sensors and actuators,
using a notch filter and a phase lead compensator to extract the bending mode of the rotor
and provide optimal damping near the modal frequency. The rotor smoothly crossed the
critical speed with the low current in the experiment. Shaolin Ran [16] used a second-order
phase lead filter to provide optimal damping, then designed a notch filter to eliminate the
influence of a second-order bending mode, and the experiment proved its effectiveness.
The design of the filters expands the application of the PID control in critical vibration
control, but also increases the complexity of the control system.

The AMB-rotor system is essentially a nonlinear, strongly coupled, and multi-input-
multi-output (MIMO) system. The control method based on modern control theory pro-
vides another way to suppress the critical vibration of the maglev flexible rotor. Ran [17]
presented a detailed design for critical vibration suppression via mixed sensitivity H∞
control and achieved good suppression performance at the critical frequency in the exper-
iments and prevented current saturation. Long [18] also adopted the mixed sensitivity
H∞ optimization control theory and proposed a method to select the weighting function
according to the amplitude at the natural frequency, which reduced the vibration at the
critical speed in the experiment, and the rotor operated above the second bending critical
speed. The µ–synthesis robust control considers the uncertainty of the model in the model-
ing process, and comprehensively analyzes the robust stability and robust performance of
the system, which has great potential in suppressing the critical vibration of the flexible
rotor [19]. Zhou [20] adopted the µ–synthesis control to deal with the uncertainty caused
by the linearization of the magnetic force of the AMB in the molecular pump, and achieve
the desired performance by designing the weighting functions. Mushi [21] studied the in-
fluence of the aerodynamic cross-coupling stiffness force on rotor instability, then designed
the µ–controller and improved the stability of the rotor near the first bending mode.

Therefore, the current research on the critical vibration suppression of the flexible
rotor of the maglev high-speed motor mainly focuses on the design of various filters, while
research on modern control algorithms such as robust control is still rare. The research on
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the suppression of the critical vibration of the rotor of the magnetic levitated high-speed
motor is very meaningful to improve the power density.

In this study, the rotor vibration control model of the maglev high-speed motor is
established based on the model reduction theory, and the µ-controller and weighting
function are designed to deal with the modal uncertainty. Finally, a maglev high-speed
motor experimental platform with a flexible rotor is built to verify the effectiveness of the
control algorithm in suppressing the critical vibration.

2. Modeling of the Maglev High-Speed Motor System
2.1. System Configuration

The maglev system in the high-speed motor is a closed-loop feedback system, which
includes the controller, D/A conversion, power amplifier, displacement sensor, A/D
conversion and AMB-rotor system. The typical control schematic diagram of the maglev
system is shown in Figure 2.
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Figure 2. Control schematic diagram of the maglev system.

The three-dimensional model of the high-speed motor is shown in Figure 3. The
flexible rotor is supported by radial magnetic bearings at both ends, and the radial magnetic
bearings in the middle are used to load external excitation to the rotor, which is not used
in this experiment. The rotor is driven by a 4 kW permanent magnet synchronous motor
via a lightweight flexible coupling. The maximum speed of the motor is 240 Hz. When the
AMBs do not work, the rotor falls on the auxiliary bearings, which are installed beside the
AMBs and can protect the stator in case of rotor instability.
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2.2. Modeling of AMB

The AMB stator is an 8-pole heteropolar structure made of laminated silicon steel.
The magnetic pole direction deviates from the vertical by 45◦ so that the gravity of the
rotor can be evenly distributed in the two control directions, ensuring that the dynamic
characteristics of the x-axis and y-axis are almost the same. In order to ensure sufficient
stiffness in both positive and negative directions, the differential control mode is generally
adopted. Although the electromagnetic force Fmag of the AMB is nonlinear relative to the
air gap and current to simplify the control design, it can be transformed into a linear model
by Taylor expansion:

Fmag = kii− kxx (1)

where, ki is the current stiffness coefficient, kx is the displacement stiffness coefficient, i is
the control current, and x is the displacement of the rotor off the center.

However, due to errors in the manufacturing and assembly process, there may be dif-
ferences between the actual AMB model and theoretical design model. Therefore, it is still
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necessary to measure the actual stiffness coefficients through a pull test [22], and in this study,
the current stiffness is ki = 214 N/A and the displacement stiffness is kx = 1110 N/mm.

2.3. Flexible Rotor Modeling and Order Reduction

When the rotor operates above the first bending mode frequency, it will become
a flexible rotor. The transfer matrix method or finite element method can be generally
used for the modeling of flexible rotors. Because the transfer matrix method may cause
numerical instability in the calculation process, the finite element method [23,24] with
higher calculation accuracy is adopted in this study. The finite element model of the flexible
rotor can be obtained by dividing the rotor into 56 elements, as shown in Figure 4. The
driven end of the rotor is defined as the A end, and the non-driven end is the B end.
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Figure 4. Finite element model of the flexible rotor.

The measuring ring, silicon steel sheet, permanent magnet, shaft sleeve and other
accessory parts, which are sleeved on the outside of the spindle, can be regarded as the
added mass and inertia moment on the node. Therefore, the dynamic model of the rotor
can be expressed by a second-order differential equation:{

M
..
q + (D + ΩJ)

.
q + Kq = Q1Fmag + Q2f

y = Q3q
(2)

where, M, D and K are mass matrix, internal damping matrix and stiffness matrix, respec-
tively, which are positive definite symmetric matrices. J is the gyroscopic matrix as an
antisymmetric matrix. q is the displacement of each rotor element along the x and y axes
and angular displacement around the x and y axes, and thus a 224 × 1 matrix. Fmag is a
column vector containing 4 elements which represent the electromagnetic force, and Q1
is the distribution matrix of the electromagnetic force. f is the external force on the rotor,
generally the unbalanced force, and Q2 is its distribution matrix. y is the displacement
output matrix of the sensor and Q3 is the distribution matrix of the displacement sensors.
For the specific acquisition method of each matrix in the finite element model, refer to the
relevant rotor dynamics books [25].

According to the finite element principle, the rotor finite element model is dynamically
analyzed. Rotor modal analysis is an important process in rotor design, which shows the
layout of the displacement sensor position and AMB support position along the rotor in
rigid body mode and bending mode. The undamped free-free modal shape of the flexible
rotor is obtained by programming the dynamic characteristic calculation and demonstrated
in Figure 5.

From the point of view of control, the design of the maglev flexible rotor is reasonable.
The first bending mode has good controllability and observability, the sensor-actuator
non-collocation does not introduce a stability problem, which provides a prerequisite for
suppressing the critical vibration at the first bending critical speed. Additionally, with
the increase in the operation speed, the rotor eigenvalues will bifurcate, so the Campbell
diagram is introduced to analyze the gyroscopic effect, as shown in Figure 6. The closed-
loop support stiffness of the AMBs is set to 106 N/m according to engineering experience.
The first bending frequency of the rotor does not have obvious bifurcation with the increase
in the rotational speed, indicating that the gyroscopic effect can be ignored in the controller
design process. Therefore, the following modeling and analysis are only conducted in the
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xOz plane. The first critical speed of the rotor is ω1 = 184.3 Hz, and the second critical speed
is ω2 = 496.1 Hz, so the rotor will pass through the first critical speed during running up.
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However, the flexible rotor model in Equation (2) is developed on the physical coordi-
nates after finite element division, and the dimension of the dynamic model is 224. It will be
very difficult to design and simulate the controller based on such a model. Therefore, it is
necessary to truncate the original flexible rotor dynamics model and ignore the uninterested
higher-order modes to obtain the lower order model.

To transform physical space into modal space, the modal transformation matrix ψ is
constructed as

q = ψη (3)

where, the modal transformation matrix ψ is a selected subset containing feature vectors
of corresponding modes, and η is the transformed modal coordinate. The modal matrix
only contains a set of truncated effective modes, namely the first two bending modes in
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this work. Then, by substituting Equation (3) into Equation (2) and premultiplying by ψT

at both sides of the equation, the corresponding truncation form is obtained as follows{
ψTMψ

..
η+ ψTDψ

.
η+ ψTKψη = ψTQ1Fmag + ψTQ2f

y = Q3ψη
(4)

The reduced model in Equation (4) above can be expressed as{
Mr

..
η+ Dr

.
η+ Krη = ψTQ1Fmag + ψTQ2f

y = Crη
(5)

where, Mr = ψTMψ = I, Dr = ψTDψ, Kr = ψTKψ = Λ2 = diag [0, 0, ω1
2, ω2

2], Cr = Q3ψ.
The internal damping of the metal rotor is generally very small, the damping matrix can
be expressed as Dr = 2ξΛ, where ξ = 0.3%. After modal truncation, modal coordinate η
only contains 4 degrees of freedom, including two orders in rigid mode and two orders in
flexible mode, which greatly simplifies the controller design. Then, substitute Equation (1)
into Equation (5), the dynamic differential equation of Equation (5) is converted into the
state space form as follows

[ .
η
..
η

]
=

[
0 I

−Λ2 + kxψTQ1Q1
Tψ −2ξΛ

][
η
.
η

]
+

[
0 0

kiψ
TQ1 ψTQ2

][
i f

]
y =

[
Cr 0

][ η
.
η

] (6)

2.4. Modeling of Electrical Modules

The power amplifier is an important part of the actuator in the AMB system; it receives
the signal from the controller and generates the corresponding current to drive the coil.
The dynamics of the power amplifier is related to DC bus voltage and coil inductance. In
order to establish its model, the method of system identification is utilized to exert the
swept-frequency cosine signal at the input and measure the current value at the output
to obtain its frequency response curve. The transfer function of the single channel power
amplifier is obtained by curve fitting as

Ga(s) =
(τas + 1)ωa

2

s2 + 2ξaωas + ωa2 (7)

where, τa = 0.00012 s, ωa = 530 rad/s, ξa = 0.22. The dynamic characteristics of each channel
of the power amplifier are similar, which can all be expressed by the transfer function of
Equation (6). Therefore, the transfer function of the two-input-two-output power amplifier
in the xOz plane is expressed as blkdiag [Ga, Ga], where blkdiag represents the block
diagonal matrix constructor function.

Four eddy current displacement sensors are used to measure the rotor position in
real-time. The measurement range is 1 mm and the output range is 0~5 V. Since there
is a low-pass filter circuit in the signal processing circuit of the sensor to eliminate high-
frequency signals, the transfer function Gs (s) of the single channel displacement sensor can
also be expressed as a first-order inertial element:

Gs(s) =
Ks

τss + 1
(8)

where, Ks = 5000 V/m, τs = 0.000056 s. Similarly, the transfer function of the two-input-
two-output displacement sensor in the xOz plane is expressed as blkdiag [Gs, Gs].

3. µ–Synthesis Control Design

As a multivariable controller design technology, when considering the uncertainty of
the system, µ–synthesis technology takes robust stability and robust performance as the
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unified optimization index, and is very suitable for dealing with complex MIMO control
problems, such as the control of the flexible mode of the maglev rotor in this study [26].
The control block diagram of the feedback loop of µ–synthesis control is shown in Figure 7,
where G is the physical system of the high-speed motor and K is the µ–controller to be
designed, ∆ is parameter uncertainty. r is the reference position signal, e is the position
tracking error, d is the external disturbance, u is the controller output, z1 and z2 are weighted
outputs, and they are all vectors. Wu, We, Wd and Wr are weighted function matrices that
define the performance.
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The transfer function matrix from the inputs to the performance outputs is[
z1
z2

]
= M

[
r
d

]
=

[
WeSWr WeGSWd

WuKSWr WuTWd

][
r
d

]
(9)

where S = I/(I + GK) is the output sensitivity function of the closed-loop system, and
T = GK/(I + GK) is the complementary sensitivity function. µ-synthesis is to find a stabi-
lizing controller K so that the structured singular value is less than 1, which is

µ∆(M) :=
1

min{σ(∆) : ∆ ∈ ∆, det(I−M∆) = 0} < 1 (10)

3.1. Modal Frequency Uncertainty

The model established by the finite element method will have errors compared with
the actual rotor, and the change in interference fit characteristics of the rotor assembly
during operation leads to the change in the global stiffness of the rotor, which both cause
the perturbation of the modal frequency. The rotor modal frequency perturbation is a kind
of parameter uncertainty, and its change will have a great impact on the robustness of the
system. Proper consideration of uncertainty is the key problem of robust control. The i-th
bending modal frequency of the nominal flexible rotor model is ωi, then the uncertain
modal frequency considering the multiplicative uncertainty δi is expressed as ωi (1 + δi).
Since the modal frequency only appears in the state matrix A of the system state space
equation in Equation (6), the uncertain state matrix with the uncertain modal frequency
can be expressed as

∆Ai=

[
0 1

−[ωi(1 + δi)]
2 −2ξiωi(1 + δi)

]
=

[
0 1
−ωi

2 −2ξωi

]
+ δi

[
0 0

−2ωi
2 −2ξωi

] (11)

The perturbation range of the first order bending mode frequency is [−5%, +5%], and
that of the second order bending mode frequency is [−2%, +2%] in this work. And since
the uncertainty δi is very small, their square terms are ignored in Equation (11).
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3.2. Weighting Functions Design

The weighting function is generally difficult to calculate accurately or pertinently
design, so it is designed based on previous experience. The forms of the weighting functions
are all MIMO transfer function matrices. Since the performance requirements and dynamic
characteristics of the four degrees of freedom of the flexible rotor are almost the same, the
weighting function of each channel can be taken as the same. Since the gyroscopic effect of
the rotor has been ignored in Section 2.3, the design is only conducted in the xOz plane, so
the weighting function matrices are as follows

Wr = blkdiag[wr, wr]
Wd = blkdiag[wd, wd]
We = blkdiag[we, we]
Wu = blkdiag[wu, wu]

(12)

where, the reference input weighting function Wr is generally used to limit the sensitivity
peak of the whole system. According to the requirements on system sensitivity in the
international standard ISO 14839-3 [27], it can be selected as a constant, namely wr = 0.33
in this study. The disturbance input weighting function Wd is to constrain the peak of the
complementary sensitivity function and is generally taken as a constant from 0.2 to 1. So in
this study, wd = 0.6.

The error output performance weighting function We is to determine the performance
of the maglev rotor such as the steady-state error, overshoot, and settling time. If designed
as a constant, it can only produce an effect similar to that of a PD controller. In order to
ensure steady-state accuracy, an integrator is also required, so we is designed as

we = ae
bes + ωe

s + ceωe
(13)

where, be = 0.41, ωe = 30 Hz is the cross-frequency with the 0 dB line, ce = 0.0733 is the
integral constant, and ae = 2.6 is the gain used to help Wr and Wd constrain the sensitivity
function S and dynamic flexibility function GS.

The control output weighting function Wu is to limit the control sensitivity and achieve
rapid attenuation of the controller gain at high frequencies to avoid control voltage satura-
tion, so it is usually in the form of a second-order high pass filter. Generally, Wu is the most
difficult weight function to design. After several iterations, the final design is

wu = 0.0102 · ωu1
2

ωu22 ·
s2 + 0.707ωu2s + ωu2

2

s2 + 0.707ωu1s + ωu1
2 (14)

where, ωu2 = 516 rad/s is the roll-down frequency, and ωu1 = 8 × ωu2 adds high frequency
poles to ensure the reciprocal of the transfer function also exists.

3.3. Controller Synthesis and Order Reduction

In this study, the D-K iterative method is used for nonconvex optimization to find the
optimal solution of the µ-synthesis problem, and the dksyn function in MATLAB is used
for the iteration steps. After several iterations, a 32-order controller is obtained. Such a
high order controller will bring a great burden to hardware calculation and is difficult to
implement in practice. Therefore, the controller order should be reduced to eliminate the
weakest controllable and observable state. The uncertainty of the system is multiplicative,
and the Hankel singular values of the full order controller are shown in Figure 8.
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Therefore, the stochastic equilibrium order reduction method is used to reduce the
controller order. According to the magnitude of the Hankel singular value in Figure 8,
a 14-order controller is selected. The singular values of both the full order and reduced
order µ-controller are shown in Figure 9, and the agreement between them is high, indicat-
ing that the order reduction does not change the robustness and control performance of
the controller.
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Figure 9. Singular values of the µ-controllers.

The pole-zero plot of the reduced order µ-controller is demonstrated in Figure 10. All
poles of the controller are located in the left half of the complex plane, so the µ-controller is
stable. A pair of zeros —28.1 ± 921 i are inserted before the first bending frequency of the
flexible rotor to stabilize the weak damping modal.

The bode diagram of the reduced order µ-controller of the channels from A end to A
end and from B end to B end is given in Figure 11. At low frequency, due to the limitation
of the weighting function We, the controller has a good integration effect, which ensures
high static stiffness and good steady state accuracy. In the middle frequency band, the
controller is similar to the PD controller, which has a good stabilizing effect on the rigid
body mode of the rotor. At high frequency, the controller has a series of poles and zeros to
stabilize the flexible mode of the rotor and rapidly obtain the gain decay.
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Figure 11. Bode diagram of the µ-controller.

Additionally, the sensitivity function of the closed-loop system under the µ-controller
with uncertain modal frequency is shown in Figure 12. The sensitivity peaks of the system
at the A end and B end are 8.31 and 8.25 dB, respectively. Although the uncertainty exits,
the µ-controller still has good performance and the sensitivity function falls within Zone A
according to ISO 14839-3.
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4. Experimental Platform and Verification

To verify the control effect of the µ-controller on the critical vibration of the flexible
rotor of the maglev high-speed motor, the maglev high-speed motor experimental platform
with the flexible rotor is built. The experimental platform is shown in Figure 13, including
the maglev high-speed motor, dSPACE rapid control prototype, power amplifier and
monitoring computer.
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Figure 13. Maglev high-speed motor experimental platform with the flexible rotor.

The DC bus voltage of the power amplifier is 70 V, and the switching frequency is
25 kHz. The measuring range of the eddy current displacement sensor is 1 mm, and the
static accuracy is±0.5 µm. The parameters of the experimental platform are in Table 1. After
designing the µ-controller according to the previous process, the controller is discretized at
a frequency of 20 kHz with bilinear transformation and then executed in the dSPACE 1007
rapid control prototype.
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Table 1. Parameters of the experimental platform.

Parameter Value

Rotor length 0.93 m
Rotor mass 18.14 kg

Rotor moment of inertia 0.0167 kg·m2

Air gap 0.5 mm
Protection gap 0.25 mm

Bias current 2.5 A
Control frequency 20 kHz

DC bus voltage 70 V
Switching frequency 25 kHz

Before the implementation of the µ-controller, an ordinary PID controller with in-
complete differentiation is applied as the controller in Figure 2. The system sensitivity
function with PID control can be measured by the online swept-frequency experiment [27].
The swept-frequency cosine signal is in linear mode from 0.1 to 2000 Hz in 3 s, and the
signal amplitude is from 50 to 80 mV. The theoretical sensitivity function can be acquired
on the basis of the models in Section 2. So the sensitivity function comparison between
the theoretical simulation and experimental result with the PID controller is displayed in
Figure 14.
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Figure 14. Sensitivity function comparison with the PID controller.

The comparison shows good agreement between the theoretical simulation and exper-
imental results, proving the accuracy of the established models. The slight inconsistency of
the A end at low frequency results from the flexible coupling, and the uncertainty of low
frequency would not cause serious robustness problems. The sensitivity peaks of the A
end and B end with the PID controller, occurring near the critical frequency are 14.61 and
11.76 dB, respectively, and hardly fall within the acceptable stability margin.

The running up experiment with the PID controller is then conducted. When the
rotor speed rises to near the critical speed, the rotor vibration soars drastically, and finally
leads to severe contact between the rotor and auxiliary bearing at 10,960 rpm, as shown in
Figure 15. The rotor fails to pass through the first bending mode frequency with the PID
controller, because it can only provide little damping at the critical speed.
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Figure 15. Rotor trajectory during running up with the PID controller.

Furthermore, the µ-controller is implemented to replace the PID controller. The
levitation response test of the µ-controller is first conducted, the rotor orbit is shown in
Figure 16. The rotor levitates from the auxiliary bearing and reaches the equilibrium
position in less than 0.05 s, and the overshoot is less than ±80 µm, which shows good
transient performance of the controller. After stable levitation, it has high steady-state
precision, within ±5 µm.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 17 
 

 

 

Figure 15. Rotor trajectory during running up with the PID controller. 

Furthermore, the μ-controller is implemented to replace the PID controller. The lev-

itation response test of the μ-controller is first conducted, the rotor orbit is shown in Fig-

ure 16. The rotor levitates from the auxiliary bearing and reaches the equilibrium posi-

tion in less than 0.05 s, and the overshoot is less than ±80 μm, which shows good transi-

ent performance of the controller. After stable levitation, it has high steady-state preci-

sion, within ±5 μm. 

0 0.05 0.1 0.15 0.2
−300

−200

−100

0

100

200

300

time (s)

D
is

pl
ac

em
en

t 
(μ

m
)

 

Figure 16. Levitation response curve with the μ-controller. 

The running up experiment with the μ-controller is also conducted. Figure 17 gives 

the rotor orbit during the running up process. The flexible rotor passes through the first 

bending mode frequency of about 10,900 rpm and then stably operates at the maximum 

speed of 14,400 rpm. It can be clearly observed that the rotor orbit increases considerably 

at the rigid modal frequency of 2940 and 4500 rpm and the flexible modal frequency of 

10,900 rpm. The rotor orbit at the first bending frequency, which is the largest during the 

running up, is shown in Figure 18. The rotor displacement is within ±50 μm, and the 

control effect is still good, which verifies the effectiveness of the μ-controller and cor-

rectness of the design process in this study. 

Figure 16. Levitation response curve with the µ-controller.

The running up experiment with the µ-controller is also conducted. Figure 17 gives
the rotor orbit during the running up process. The flexible rotor passes through the first
bending mode frequency of about 10,900 rpm and then stably operates at the maximum
speed of 14,400 rpm. It can be clearly observed that the rotor orbit increases considerably
at the rigid modal frequency of 2940 and 4500 rpm and the flexible modal frequency of
10,900 rpm. The rotor orbit at the first bending frequency, which is the largest during the
running up, is shown in Figure 18. The rotor displacement is within ±50 µm, and the
control effect is still good, which verifies the effectiveness of the µ-controller and correctness
of the design process in this study.
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5. Conclusions

This study analyzes the critical vibration suppression of the maglev high-speed motor
with µ-synthesis control. The accurate model of the maglev system is firstly established and the
dynamics of the flexible rotor analyzed. Then, the modal frequency uncertainty of the flexible
rotor is mainly considered, weighting functions limiting the performance are designed, and
µ-controller is developed and its order is reduced. Finally, the experimental platform of the
maglev high-speed motor with the flexible rotor is built, and the rotor smoothly passes through
the first bending mode frequency to achieve the supercritical operation.
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