Freshness Identification of Oysters Based on Colorimetric Sensor Array Combined with Image Processing and Visible Near-Infrared Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Colorimetric Sensor Array Image Data Acquisition
2.3. Visible Near-Infrared Spectroscopy Data Acquisition
2.4. Variable Screening of Visible Near-Infrared Spectroscopy Data
2.5. Multivariate Statistical Analysis
3. Results
3.1. Image Characterization of Oysters Stored for Different Times by Colorimetric Sensor Array
3.2. Results of Colorimetric Sensor Array Combined with Image Processing
3.3. Results of Colorimetric Sensor Array Combined with Visible Near-Infrared Spectroscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miao, L.; Walton, W.C.; Wang, L.; Li, L.; Wang, Y. Characterization of polylactic acids-polyhydroxybutyrate based packaging film with fennel oil, and its application on oysters. Food Packag. Shelf Life 2019, 22, 100388. [Google Scholar] [CrossRef]
- Son, K.T.; Shim, K.B.; Lim, C.W.; Yoon, N.Y.; Seo, J.H.; Jeong, S.G.; Jeong, W.Y.; Cho, Y.J. Relationship of pH, Glycogen, Soluble Protein, and Turbidity between Freshness of Raw Oyster Crassostrea gigas. Korean J. Fish. Aquat. Sci. 2014, 47, 495–500. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Li, Z.; Yu, F.; Zhang, X.; Xue, Y.; Xue, C. Hyperspectral Imaging and Chemometrics for Nondestructive Quantification of Total Volatile Basic Nitrogen in Pacific Oysters (Crassostrea gigas). Food Anal. Methods 2018, 12, 799–810. [Google Scholar] [CrossRef]
- Aaraas, R.; Hernar, I.; Vorre, A.; Bergslien, H.; Lunestad, B.; Skeie, S.; Slinde, E.; Mortensen, S. Sensory, Histological, and Bacteriological Changes in Flat Oysters, Ostrea edulis L., during Different Storage Conditions. J. Food Sci. 2006, 69, S205–S210. [Google Scholar] [CrossRef]
- Choi, M.-S.; Jeon, E.B.; Kim, J.Y.; Choi, E.H.; Lim, J.S.; Choi, J.; Ha, K.S.; Kwon, J.Y.; Jeong, S.H.; Park, S.Y. Virucidal Effects of Dielectric Barrier Discharge Plasma on Human Norovirus Infectivity in Fresh Oysters (Crassostrea gigas). Foods 2020, 9, 1731. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Xue, C.-H.; Liu, Q.; Xue, Y. Microbiological, chemical, and sensory assessment of Pacific oysters (Crassostrea gigas) stored at different temperatures. Czech J. Food Sci. 2009, 27, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Madigan, T.L.; Bott, N.; Torok, V.; Percy, N.J.; Carragher, J.; Lopes, M.D.B.; Kiermeier, A. A microbial spoilage profile of half shell Pacific oysters (Crassostrea gigas) and Sydney rock oysters (Saccostrea glomerata). Food Microbiol. 2014, 38, 219–227. [Google Scholar] [CrossRef]
- Rong, C.; Ling, Z.; Huihui, S.; Qi, L. Characterization of microbial community in high-pressure treated oysters by high-throughput sequencing technology. Innov. Food Sci. Emerg. Technol. 2018, 45, 241–248. [Google Scholar] [CrossRef]
- Lee, K.M.; Son, M.; Kang, J.H.; Kim, D.; Hong, S.; Park, T.H.; Chun, H.S.; Choi, S.S. A triangle study of human, instrument and bioelectronic nose for non-destructive sensing of seafood freshness. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Liu, S.; Walton, W.C.; Wang, Y. Volatile organic compounds of Eastern oyster (Crassostrea virginica) cultured by two treatments and their changes during cold storage. Aquac. Res. 2021, 52, 1442–1452. [Google Scholar] [CrossRef]
- Lin, H.; Jiang, H.; Lin, J.; Chen, Q.; Ali, S.; Teng, S.W.; Zuo, M. Rice Freshness Identification Based on Visible Near-Infrared Spectroscopy and Colorimetric Sensor Array. Food Anal. Methods 2021, 14, 1305–1314. [Google Scholar] [CrossRef]
- Ezhilan, M.; Nesakumar, N.; Babu, K.J.; Srinandan, C.; Rayappan, J.B.B. Freshness Assessment of Broccoli using Electronic Nose. Measurement 2019, 145, 735–743. [Google Scholar] [CrossRef]
- Zhang, C.; Suslick, K.S. A Colorimetric Sensor Array for Organics in Water. J. Am. Chem. Soc. 2005, 127, 11548–11549. [Google Scholar] [CrossRef] [PubMed]
- Salinas, Y.; Ros-Lis, J.V.; Vivancos, J.-L.; Martínez-Máñez, R.; Marcos, M.D.; Aucejo, S.; Herranz, N.; Lorente, I.; Garcia, E. A novel colorimetric sensor array for monitoring fresh pork sausages spoilage. Food Control 2014, 35, 166–176. [Google Scholar] [CrossRef]
- Magnaghi, L.R.; Capone, F.; Zanoni, C.; Alberti, G.; Quadrelli, P.; Biesuz, R. Colorimetric Sensor Array for Monitoring, Modelling and Comparing Spoilage Processes of Different Meat and Fish Foods. Foods 2020, 9, 684. [Google Scholar] [CrossRef] [PubMed]
- Huo, D.; Wu, Y.; Yang, M.; Fa, H.; Luo, X.; Hou, C. Discrimination of Chinese green tea according to varieties and grade levels using artificial nose and tongue based on colorimetric sensor arrays. Food Chem. 2014, 145, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Zhang, D.; Aheto, J.H.; Feng, F.; Duan, T. Integration of a low-cost electronic nose and a voltammetric electronic tongue for red wines identification. Food Sci. Nutr. 2020, 8, 4330–4339. [Google Scholar] [CrossRef] [PubMed]
- Guan, B.; Xue, Z.; Chen, Q.; Lin, H.; Zhao, J. Preparation of zinc porphyrin nanoparticles and application in monitoring the ethanol content during the solid-state fermentation of Zhenjiang Aromatic vinegar. Microchem. J. 2020, 153, 104353. [Google Scholar] [CrossRef]
- Guan, B.; Zhao, J.; Jin, H.; Lin, H. Determination of Rice Storage Time with Colorimetric Sensor Array. Food Anal. Methods 2017, 10, 1054–1062. [Google Scholar] [CrossRef]
- Kutsanedzie, F.Y.; Hao, L.; Yan, S.; Ouyang, Q.; Chen, Q. Near infrared chemo-responsive dye intermediaries spectra-based in-situ quantification of volatile organic compounds. Sens. Actuators B Chem. 2018, 254, 597–602. [Google Scholar] [CrossRef]
- Lin, H.; Man, Z.-X.; Kang, W.-C.; Guan, B.-B.; Chen, Q.-S.; Xue, Z.-L. A novel colorimetric sensor array based on boron-dipyrromethene dyes for monitoring the storage time of rice. Food Chem. 2018, 268, 300–306. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, J.; Guo, H.; Sun, J.; Ji, S.; Wang, Z. Long-Lived Room-Temperature Near-IR Phosphorescence of BODIPY in a Visible-Light-Harvesting N^C^N PtII-Acetylide Complex with a Directly Metalated BODIPY Chromophore. Chem. Eur. J. 2012, 18, 1961–1968. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Su, C. Authenticity identification and classification of Rhodiola species in traditional Tibetan medicine based on Fourier transform near-infrared spectroscopy and chemometrics analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 204, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Xiao, H.; Zhang, L.; Feng, D.; Zhang, F.; Jiang, M.; Sui, Q.; Jia, L. Fast determination of oxides content in cement raw meal using NIR spectroscopy combined with synergy interval partial least square and different preprocessing methods. Measurement 2020, 149, 106990. [Google Scholar] [CrossRef]
- Hu, L.; Yin, C.; Ma, S.; Liu, Z. Rapid detection of three quality parameters and classification of wine based on Vis-NIR spectroscopy with wavelength selection by ACO and CARS algorithms. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 205, 574–581. [Google Scholar] [CrossRef]
- Su, W.-H.; Sun, D.-W. Multispectral Imaging for Plant Food Quality Analysis and Visualization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 220–239. [Google Scholar] [CrossRef] [Green Version]
- Agyekum, A.A.; Kutsanedzie, F.Y.; Annavaram, V.; Mintah, B.K.; Asare, E.K.; Wang, B. FT-NIR coupled chemometric methods rapid prediction of K-value in fish. Vib. Spectrosc. 2020, 108, 103044. [Google Scholar] [CrossRef]
- Agyekum, A.A.; Kutsanedzie, F.Y.H.; Mintah, B.K.; Annavaram, V.; Zareef, M.; Hassan, M.; Arslan, M.; Chen, Q. Rapid and Nondestructive Quantification of Trimethylamine by FT-NIR Coupled with Chemometric Techniques. Food Anal. Methods 2019, 12, 2035–2044. [Google Scholar] [CrossRef]
Color-Sensitive Materials | Component 1 | Component 1 | Component 1 |
---|---|---|---|
2,3,7,8,12,13,17,18-Octaethyl-21H,23H-porphine manganese(III) chloride | 3.51 ± 2.31 | 13.44 ± 1.66 | 2.28 ± 1.32 |
5,10,15,20-Tetrakis(4-methoxyphenyl)-21H,23H-porphine iron(III) chloride | 3.69 ± 3.99 | 3.99 ± 1.46 | 3.12 ± 1.28 |
5,10,15,20-Tetraphenyl-21H,23H-porphine iron(III) chloride | 4.17 ± 4.45 | 2.62 ± 0.91 | 2.75 ± 1.38 |
5,10,15,20-tetra(4-methoxyphenyl)Porphyrin Fe(II) complex | 4.29 ± 0.81 | 3.41 ± 0.98 | 3.43 ± 1.32 |
5,10,15,20-Tetrakis(4-sulfonatophenyl)-21H,23H-porphine manganese(III) chloride | 3.73 ± 0.54 | 4.57 ± 2.12 | 3.04 ± 1.16 |
5,10,15,20-Tetraphenyl-21H,23H-porphine nickel(II) | 3.35 ± 2.11 | 4.63 ± 2.47 | 4.45 ± 1.02 |
5,10,15,20-Tetraphenyl-21H,23H-porphine palladium(II) | 2.92 ± 0.74 | 4.96 ± 3.52 | 23.50 ± 2.94 |
5,10,15,20-Tetraphenyl-21H,23H-porphine palladium(II) | 2.44 ± 0.95 | 2.16 ± 0.90 | 3.36 ± 2.93 |
meso-tetra(4-sulfonic) porphine tetrasodium dodecahydrate | 2.06 ± 0.74 | 0.78 ± 0.47 | 4.67 ± 0.82 |
5,10,15,20-Tetraphenyl-21H,23H-porphine cobalt(II) | 0.87 ± 0.53 | 1.37 ± 0.86 | 11.14 ± 1.07 |
4,4′-difluoro-8-(methyl 4-benzoate)-1,7-dimethyl-2,6-diethyl-3,5,-distyryl-(3,5-di-tert-butyl-4-hydroxyphenyl)-4-bora-3a,4a-diaza-s-indacene | 1.52 ± 0.43 | 4.10 ± 1.18 | 29.13 ± 2.24 |
8-(4-Carbazolephenyl)-4,4-difluoroboron dipyrromethane | 13.49 ± 1.85 | 7.15 ± 0.97 | 4.43 ± 1.05 |
8-(4-Nitrophenyl)-4,4-difluoro-6-bromoborin dipyrromethane | 2.66 ± 1.21 | 3.24 ± 1.73 | 10.89 ± 1.45 |
8-(4-Nitrophenyl)-4,4-difluoro-2,6-dibromoborin dipyrrole | 3.44 ± 0.99 | 3.58 ± 0.83 | 30.66 ± 3.20 |
8-(6-methoxy-2-naphthyl)-4,4-difluoroboron dipyrromethane | 2.10 ± 1.24 | 15.06 ± 3.09 | 4.26 ± 1.45 |
Bis (8-phenyldipyrromethane) nickel(II) | 3.83 ± 0.85 | 1.15 ± 0.80 | 5.02 ± 2.19 |
Bis [8-(4-formylformylphenyl) dipyrromethane] nickel (II) | 2.70 ± 0.62 | 7.22 ± 1.51 | 1.53 ± 2.23 |
Bis [8-(6-methoxy-2-naphthyl)dipyrromethane] nickel(II) | 3.43 ± 0.85 | 2.72 ± 0.42 | 2.65 ± 1.20 |
Di [8-(4-carbazolephenyl) dipyrromethane] copper(II) | 0.97 ± 0.54 | 2.34 ± 1.14 | 10.57 ± 4.75 |
Bis [8-(4-carbazolylphenyl) dipyrromethane] zinc(II) | 1.33 ± 0.49 | 3.09 ± 0.95 | 6.43 ± 2.32 |
Variable Screening Algorithms | LDA | KNN | |||||
---|---|---|---|---|---|---|---|
PCs | Rc | Rp | PCs | K Value | Rc | Rp | |
ACO | 11 | 100% | 97.22% | 6 | 1 | 99.07% | 94.44% |
CARS | 3 | 90.74% | 94.44% | 7 | 1 | 96.30% | 93.06% |
GA | 9 | 100% | 97.22% | 11 | 1 | 99.07% | 97.22% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, B.; Kang, W.; Jiang, H.; Zhou, M.; Lin, H. Freshness Identification of Oysters Based on Colorimetric Sensor Array Combined with Image Processing and Visible Near-Infrared Spectroscopy. Sensors 2022, 22, 683. https://doi.org/10.3390/s22020683
Guan B, Kang W, Jiang H, Zhou M, Lin H. Freshness Identification of Oysters Based on Colorimetric Sensor Array Combined with Image Processing and Visible Near-Infrared Spectroscopy. Sensors. 2022; 22(2):683. https://doi.org/10.3390/s22020683
Chicago/Turabian StyleGuan, Binbin, Wencui Kang, Hao Jiang, Mi Zhou, and Hao Lin. 2022. "Freshness Identification of Oysters Based on Colorimetric Sensor Array Combined with Image Processing and Visible Near-Infrared Spectroscopy" Sensors 22, no. 2: 683. https://doi.org/10.3390/s22020683
APA StyleGuan, B., Kang, W., Jiang, H., Zhou, M., & Lin, H. (2022). Freshness Identification of Oysters Based on Colorimetric Sensor Array Combined with Image Processing and Visible Near-Infrared Spectroscopy. Sensors, 22(2), 683. https://doi.org/10.3390/s22020683