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Abstract: Volatile organic compounds (VOCs) could be used as an indicator of the freshness of
oysters. However, traditional characterization methods for VOCs have some disadvantages, such as
having a high instrument cost, cumbersome pretreatment, and being time consuming. In this work, a
fast and non-destructive method based on colorimetric sensor array (CSA) and visible near-infrared
spectroscopy (VNIRS) was established to identify the freshness of oysters. Firstly, four color-sensitive
dyes, which were sensitive to VOCs of oysters, were selected, and they were printed on a silica
gel plate to obtain a CSA. Secondly, a charge coupled device (CCD) camera was used to obtain the
“before” and “after” image of CSA. Thirdly, VNIS system obtained the reflected spectrum data of
the CSA, which can not only obtain the color change information before and after the reaction of the
CSA with the VOCs of oysters, but also reflect the changes in the internal structure of color-sensitive
materials after the reaction of oysters’ VOCs. The pattern recognition results of VNIS data showed
that the fresh oysters and stale oysters could be separated directly from the principal component
analysis (PCA) score plot, and linear discriminant analysis (LDA) model based on variables selection
methods could obtain a good performance for the freshness detection of oysters, and the recognition
rate of the calibration set was 100%, while the recognition rate of the prediction set was 97.22%.
The result demonstrated that the CSA, combined with VNIRS, showed great potential for VOCS
measurement, and this research result provided a fast and nondestructive identification method for
the freshness identification of oysters.

Keywords: oysters; storage time; colorimetric sensor array; visible near-infrared spectroscopy;
variable screening

1. Introduction

Oysters are a kind of seafood with a fatty and tender texture, and are the most popular
seafood in the world [1]. They contain rich nutrients, such as protein, calcium, iron, and
zinc, and are known as “sea milk”. In addition, the large amount of glycogen contained in
oysters helps digestion and absorption for the elderly and children, and these ingredients
also have a variety of physiological activities, such as cancer prevention [2]. However, it is
precisely because of their high water content, fragile muscle tissue, and active endogenous
proteases that the oysters are easily contaminated by infection and may undergo subse-
quent decomposition mediated by bacteria and fungi during transportation and storage [3],
leading to spoilage which affects the food quality and safety of oysters. Therefore, it is
necessary to detect the quality of oysters during transportation, storage and processing.
Quality characteristics of oysters mainly include texture, color, tenderness, pH value and
freshness, among which freshness is the most important reference index for evaluating the
quality and safety of seafood [3–5]. The traditional detection methods for the shelf life or
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freshness of oysters mainly include sensory, chemical, physical and microbial population
evaluation [6–9]. However, sensory evaluation requires professional training and is easily
influenced by subjective factors. Other methods, including chemical techniques and micro-
biological measurements, are time consuming, destructive, and laborious. Therefore, it is
necessary to develop a fast and non-destructive method for oyster freshness evaluation.

During the storage process, changes in the nutritional content of oysters is closely
related to the volatile organic compounds (VOCs). For instance, the intensity of VOCs
(lilac aldehyde, pentanal and 2,6-nonadienal) increased significantly during storage [10]. In
addition, flavor is among the main indicators for sensor analysis and quality estimation [11].
Hence, VOCs can be used as an indicator of the freshness of oysters. The traditional VOCs
detection method is mainly gas chromatography-mass spectrometer (GC-MS). However,
this method has some disadvantages, such as the high instrument cost, being destructive to
samples, cumbersome pretreatment, and being time consuming. Compared with GC-MS,
the electronic nose mainly uses gas sensors to capture the VOCs of the sample and then
converts it into electrical signals. Although, compared with GC-MS, it has the advantages
of being time saving, low cost, simple to operate, and non-destructive, the electronic nose
was affected by the humidity of the working environment which can lead to signal drift [12].
The colorimetric sensor array was first put forward by Kenneth Suslick [13] and is a new
method of characterizing VOCs that has emerged in recent years. Colorimetric sensor array
was composed by chemical dyes that are sensitive to the specific VOCs (which can change
colors after exposure to specific VOCs). The color difference value of the colorimetric sensor
array before and after exposure to specific VOCs can be obtained by a charge coupled
device (CCD) camera for qualitative and quantitative analysis, which could express smell
information through color changes. Colorimetric sensors have been widely applied for
aroma quality evaluation of pork, fish, tea, wine, vinegar and other kinds of food [14–19].
However, the change information that is obtained based on the colorimetric sensor array is
mainly characterized by extracting the RGB difference images before and after the reaction;
that is, the color change of each color-sensitive material is only characterized by the three
components of R, G, and B. Therefore, less effective amounts of information may limit
the correctness of judging the storage time of oysters to a certain extent. Near-infrared
spectroscopy is a physical technique with the advantages of simple operation and rapid
detection. However, it cannot directly detect gaseous compounds. What is more, due to
the high water content of raw oyster samples, the freshness of raw oysters detected by
near-infrared spectroscopy technology directly alone would likely be affected by humidity.
At present, our research group has carried out a series of experiments on the combination
of near-infrared spectrometers and colorimetric sensor array [20]. Visible near-infrared
spectroscopy combines the colorimetric sensor array method with near-infrared technology.
On one hand, it avoids the influence of humidity on the near-infrared technology and has
the advantage of high accuracy; on the other hand, it not only reflects the color change, but
also reflects changes in the internal structure of color-sensitive materials.

In this study, the colorimetric sensor array, combined with image processing and
visible near-infrared spectroscopy methods were developed to discriminate the freshness of
oysters. The performance of the colorimetric sensor array in oyster freshness identification
was analyzed and compared with the visible near-infrared spectroscopy method. On this
basis, linear discriminant analysis (LDA) and the K-nearest neighbors (KNN) model for
oyster storage time, based on the visible near-infrared spectroscopy method, was further
optimized through the selection of different variable screening algorithms.

2. Materials and Methods
2.1. Materials

Fresh and live oysters of the same batch were purchased from Zhenjiang Yonghui
Supermarket. Raw oysters of similar size were selected, with each oyster weighing about
100–120 g/piece, and all raw oysters had not been processed for moisture absorption.
Afterwards, they were placed in a refrigerator at 4 ◦C for 0 day, 2 days, 4 days, 6 days,
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8 days, and 10 days, and were accordingly divided into six groups. There were 30 samples
in each group, for a total of 180 samples. These 180 oyster samples were divided into
five parts randomly in later pattern recognition, three of which were used as training set
samples (108 samples), and two of which were used as prediction set samples (72 samples).
In this study, the raw oysters being purchased were all fresh and live, and the freshness was
qualitatively determined based on the storage days of oysters stored at in the refrigerator
at 4 ◦C.

2.2. Colorimetric Sensor Array Image Data Acquisition

In this study, color-sensitive materials were synthesized according to the classic Lind-
sey methodology in the laboratory [20,21]. Twenty color-sensitive materials were dissolved
in N,N-Dimethylformamide (DMF) with a concentration of 2.0 mg/mL, as shown in
Figure 1a, and then poured into a silica gel plate (Merck, Germany) through a capillary
tube (0.5 mm × 100 mm), structing a 4 × 5 sensor array, as shown in Figure 1b.
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The schematic diagram of the colorimetric sensor array is shown in Figure 2a. The
CCD camera recorded the “before image” of the colorimetric sensor array before it was
exposed to the VOCs of the oysters. After exposure to the VOCs for 10 min at the
temperature of 20 ◦C, the CCD camera recorded the “after image”. A special software
program performed analysis of the signal from the camera. Every color-sensitive ma-
terial is expressed by the red (R), green (G), and blue (B) value. Table 1 shows the
“mean and standard” difference value of 20 color-sensitive materials after exposure to
the oysters’ VOCs. Considering the large response difference and small standard devia-
tion, (4,4′-difluoro-8-(methyl 4-benzoate)-1,7-dimethyl-2,6-diethyl-3,5,-distyryl-(3,5-di-tert-
butyl-4-hydroxyphenyl)-4-bora-3a,4a-diaza-s-indacene (Doil), 8-(4-Carbazolephenyl)-4,4-
difluoroboron dipyrromethane (pCarBDP), 8-(4-Nitrophenyl)-4,4-difluoro-2,6-dibromoborin
dipyrrole (NO2Br2BDP), and 8-(6-methoxy-2-naphthyl)-4,4-difluoroboron dipyrromethane
(NaiOCH3BDP) were selected as the color-sensitive materials.

As seen from Figure 2c, a 2 × 2 sensor array was constructed to determine the VOCs
of oysters with different storage times (stored at 4 ◦C for 0 day, 2 days, 4 days, 6 days,
8 days, and 10 days, with 30 samples in each group for a total of 180 samples). After
being recorded as the “before image”, the colorimetric sensor array was fixed on the cover
of the gas collecting chamber, and the oyster samples were placed in the gas collecting
chamber. The cover was quickly applied to make sure that the colorimetric sensor array
was fully exposed to the VOCs. The CCD camera recorded the “after image” 10 min later.
After the reaction, the average gray values of components R, G, and B in the region of
interest (ROI) were obtained and subtracted to get the feature difference before and after the
reaction, which could standardize all of the response differences in the same measurement
and avoid the matrix effect of the colorimetric sensor array sensitivity before the reaction.
After processing with a specific image processing software, all data (180 samples) for the
vector (RGB color space model (R, G, B), HSV color space model (hue, saturation, value),
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laboratory color space model (L, a, b), and eigenvalues (
√

R2 + G2 + B2) for each of the four
dyes in the array, a total of 40 variables) were used in statistical and subsequent pattern
recognition.
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Table 1. The difference value of 20 color-sensitive materials after exposed to the oysters’ VOCs.

Color-Sensitive Materials R Component 1 G Component 1 B Component 1

2,3,7,8,12,13,17,18-Octaethyl-21H,23H-porphine
manganese(III) chloride 3.51 ± 2.31 13.44 ± 1.66 2.28 ± 1.32

5,10,15,20-Tetrakis(4-methoxyphenyl)-21H,23H-porphine
iron(III) chloride 3.69 ± 3.99 3.99 ± 1.46 3.12 ± 1.28

5,10,15,20-Tetraphenyl-21H,23H-porphine iron(III) chloride 4.17 ± 4.45 2.62 ± 0.91 2.75 ± 1.38
5,10,15,20-tetra(4-methoxyphenyl)Porphyrin Fe(II) complex 4.29 ± 0.81 3.41 ± 0.98 3.43 ± 1.32
5,10,15,20-Tetrakis(4-sulfonatophenyl)-21H,23H-porphine

manganese(III) chloride 3.73 ± 0.54 4.57 ± 2.12 3.04 ± 1.16

5,10,15,20-Tetraphenyl-21H,23H-porphine nickel(II) 3.35 ± 2.11 4.63 ± 2.47 4.45 ± 1.02
5,10,15,20-Tetraphenyl-21H,23H-porphine palladium(II) 2.92 ± 0.74 4.96 ± 3.52 23.50 ± 2.94
5,10,15,20-Tetraphenyl-21H,23H-porphine palladium(II) 2.44 ± 0.95 2.16 ± 0.90 3.36 ± 2.93

meso-tetra(4-sulfonic) porphine tetrasodium dodecahydrate 2.06 ± 0.74 0.78 ± 0.47 4.67 ± 0.82
5,10,15,20-Tetraphenyl-21H,23H-porphine cobalt(II) 0.87 ± 0.53 1.37 ± 0.86 11.14 ± 1.07

4,4′-difluoro-8-(methyl
4-benzoate)-1,7-dimethyl-2,6-diethyl-3,5,-distyryl-(3,5-di-tert-

butyl-4-hydroxyphenyl)-4-bora-3a,4a-diaza-s-indacene
1.52 ± 0.43 4.10 ± 1.18 29.13 ± 2.24

8-(4-Carbazolephenyl)-4,4-difluoroboron dipyrromethane 13.49 ± 1.85 7.15 ± 0.97 4.43 ± 1.05
8-(4-Nitrophenyl)-4,4-difluoro-6-bromoborin dipyrromethane 2.66 ± 1.21 3.24 ± 1.73 10.89 ± 1.45

8-(4-Nitrophenyl)-4,4-difluoro-2,6-dibromoborin dipyrrole 3.44 ± 0.99 3.58 ± 0.83 30.66 ± 3.20
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Table 1. Cont.

Color-Sensitive Materials R Component 1 G Component 1 B Component 1

8-(6-methoxy-2-naphthyl)-4,4-difluoroboron dipyrromethane 2.10 ± 1.24 15.06 ± 3.09 4.26 ± 1.45
Bis (8-phenyldipyrromethane) nickel(II) 3.83 ± 0.85 1.15 ± 0.80 5.02 ± 2.19

Bis [8-(4-formylformylphenyl) dipyrromethane] nickel (II) 2.70 ± 0.62 7.22 ± 1.51 1.53 ± 2.23
Bis [8-(6-methoxy-2-naphthyl)dipyrromethane] nickel(II) 3.43 ± 0.85 2.72 ± 0.42 2.65 ± 1.20

Di [8-(4-carbazolephenyl) dipyrromethane] copper(II) 0.97 ± 0.54 2.34 ± 1.14 10.57 ± 4.75
Bis [8-(4-carbazolylphenyl) dipyrromethane] zinc(II) 1.33 ± 0.49 3.09 ± 0.95 6.43 ± 2.32

1 Mean ± standard.

2.3. Visible Near-Infrared Spectroscopy Data Acquisition

The schematic diagram of a visible near-infrared spectroscopy system was shown as
Figure 2b. After the VOCs of the oysters fully react with the colorimetric sensor array for
10 min, the colorimetric sensor array was taken out and placed in the visible near-infrared
spectroscopy acquisition device, and the reflected spectrum data of the colorimetric sensor
array after reaction was collected.

The spectrum acquisition parameters are set as follows: the integration time is 100 ms,
the smoothness is five, and the number of averages is 10 times. The spectral range was
899.20~1724.71 nm, wavenumber interval was 1.66 nm with 512 variables. Each color-
sensitive material can obtain three pieces of spectral data. Therefore, a total of 540 spectra
data were collected and each spectrum had a total of 2048 variables. The temperature in the
laboratory was kept at around 20 ◦C, and the humidity was maintained at a stable level.

2.4. Variable Screening of Visible Near-Infrared Spectroscopy Data

In order to eliminate or weaken the influence of the difference of the samples dur-
ing the sampling process, as well as the scattering and optical path change during the
sampling process, firstly the spectrum was preprocessed through standard normal variate
transformation (SNV) [22,23]. In addition, due to the high-dimensional and high corre-
lation characteristics of the near-infrared spectroscopy data, the obtained near-infrared
spectroscopy data were too large, and the hydrogen-containing groups had different levels
of frequency doubling and combined frequency absorption in the near-infrared spectral
region, resulting in a large amount of overlapping redundant information for the severe
overlap of absorption peaks in the near-infrared spectroscopy [24]. In order to reduce
the blindness in the selection of spectral variables and narrow the search range, synergy
interval partial least square (siPLS) was used to screen the characteristic bands.

2.5. Multivariate Statistical Analysis

Multivariate analysis methods play a key role in characterizing the VOCs of oyster
samples with different storage times based on the colorimetric sensor array and visible near-
infrared spectroscopy. All algorithms were implemented in MATLAB R2016b (Mathworks,
Natick, MA, USA) under Windows 10.

3. Results
3.1. Image Characterization of Oysters Stored for Different Times by Colorimetric Sensor Array

Average color change profiles were obtained from oyster samples with different
storage times. Figure 3 shows the difference maps of the VOCs of oyster samples with a
storage time of 0, 2, 4, 6, 8 and 10 days of being exposed to the colorimetric sensor array. As
shown in Figure 3, the colorimetric sensor array has its specific colorific fingerprint of the
VOCs from the oyster samples with different storage times, which indicates that the oyster
samples at different storage periods have their specific VOCs.
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oysters’ VOCs with different storage time.

3.2. Results of Colorimetric Sensor Array Combined with Image Processing

The data from the colorimetric sensor variables contained overlapping information. In
order to extract useful information from the original data, principal component analysis
(PCA) was used to present the oyster storage trends in an intuitive way. Geometrical
exploration, based on the PCA score plots, shows the cluster trend in 3-dimension (3D)
space. Figure 4a shows a 3D space of all of the oysters samples with different storage times,
represented by PC1, PC2 and PC3. The cumulative variance contribution rate of the first
three principal components reached 87.92% (PC1 was 44.86%, PC2 was 25.42%, and PC3
was 17.64%). It can be seen from Figure 4a that the oyster samples of different storage
days have a certain clustering trend in the figure, but it is not very obvious. This can be
explained, on the one hand, as there being differences between the samples themselves,
and, on the other hand, as the corruption itself being a continuity.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 11 
 

 

the training set was 95.37%. The recognition result of the KNN model is much better than 

LDA, on account of the non-linear changing of the oysters’ VOCs during storage. The re-

sult of the nonlinear pattern recognition model KNN was better than that of the linear 

pattern recognition model LDA. 

 

  
 

(a) (b) (c) 

Figure 4. Pattern recognition results of PCA (a), LDA (b) and KNN (c), based on colorimetric sensor 

array. 

3.3. Results of Colorimetric Sensor Array Combined with Visible Near-Infrared Spectroscopy 

Color-sensitive materials were reacted with the VOCs of 180 oyster samples with dif-

ferent storage times, and the spectral data of four kinds of color-sensitive materials were 

then extracted, and a total of 720 spectral curves were obtained. Through calculation, the 

average spectral curves of the oysters collected by the four color-sensitive materials (Doil, 

pCarBDP, NO2Br2BDP and NaiOCH3BDP) during different storage periods were ob-

tained. The result was shown in Figure 5. It can be found that after reacting with the oys-

ters’ VOCs of different storage times, the spectrum obtained by each color-sensitive ma-

terial is different, which indicates that the color reaction of the color-sensitive material will 

be different due to the difference in storage time.  

Given that each sensor has four dyes, there are a total of 2048 variables, which are 

too many. SiPLS is used to divide the spectral interval first, and the result shows that when 

the spectrum were divided into 16 sub-intervals, and one, two, three, and four sub-inter-

vals were used to establish a joint interval, the principal component is nine, and the cross-

validation root mean square error (RMSECV) value is smallest, at 0.2711. At this time, the 

total number of variables has been reduced from 2048 to 512. 

Although siPLS has reduced the data dimension, 512 variables still have a computa-

tional burden on the establishment of the oyster freshness prediction model. Therefore, 

three different variable screening algorithms were used to select the characteristic wave-

lengths. Competitive adaptive reweighted sampling (CARS) uses adaptive heavy 

weighted sampling (ARS) to select the wavelength points with large absolute value of the 

regression coefficient in the PLS model, remove the wavelengths with small weight, and 

use interactive verification to select the lowest subset of the root mean square error of 

prediction (RMSECV) [25,26], which can effectively provide the optimal combination of 

variables. As an intelligent optimization algorithm, the genetic algorithm (GA) uses the 

global search function and continuously performs genetic iterations to achieve the best 

results [27]. The ant colony optimization (ACO) method is mainly based on the way that 

ants search for food, through global cooperation between all individuals in the group, and 

constantly exchange path information via pheromones to find the optimal solution [28]. 

As such, the variables selected by the three variable selection algorithms were qualita-

tively judged by the KNN and LDA pattern recognition models. 

Figure 4. Pattern recognition results of PCA (a), LDA (b) and KNN (c), based on colorimetric sensor array.

In order to further investigate the freshness characterization using the colorimetric sensor
array, the linear discriminant analysis (LDA) model and K-nearest neighbors (KNN) were
used to discriminate the storage times of the oyster samples. PCA scores were input into
the LDA and KNN algorithm as latent variables. The input of each model was the score of
each principal component, and the output was the category corresponding to the oysters
of different storage days, and then the LDA and KNN pattern recognition were performed.
Prediction results for identification of oyster storage times, based on LDA, were shown in
Figure 4b, and the result indicates that when the number of principal components was four,
only 58.33% of the prediction samples were correctly identified. Prediction results for the
identification of oyster storage times, based on KNN, was shown in Figure 4c, when the
number of principal components was nine and K value was one, the best recognition rate
of prediction set was 90.28%, at this time, and the recognition rate of the training set was
95.37%. The recognition result of the KNN model is much better than LDA, on account of the
non-linear changing of the oysters’ VOCs during storage. The result of the nonlinear pattern
recognition model KNN was better than that of the linear pattern recognition model LDA.
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3.3. Results of Colorimetric Sensor Array Combined with Visible Near-Infrared Spectroscopy

Color-sensitive materials were reacted with the VOCs of 180 oyster samples with
different storage times, and the spectral data of four kinds of color-sensitive materials were
then extracted, and a total of 720 spectral curves were obtained. Through calculation, the
average spectral curves of the oysters collected by the four color-sensitive materials (Doil,
pCarBDP, NO2Br2BDP and NaiOCH3BDP) during different storage periods were obtained.
The result was shown in Figure 5. It can be found that after reacting with the oysters’
VOCs of different storage times, the spectrum obtained by each color-sensitive material
is different, which indicates that the color reaction of the color-sensitive material will be
different due to the difference in storage time.
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SNV pretreatment.

Given that each sensor has four dyes, there are a total of 2048 variables, which are
too many. SiPLS is used to divide the spectral interval first, and the result shows that
when the spectrum were divided into 16 sub-intervals, and one, two, three, and four sub-
intervals were used to establish a joint interval, the principal component is nine, and the
cross-validation root mean square error (RMSECV) value is smallest, at 0.2711. At this time,
the total number of variables has been reduced from 2048 to 512.

Although siPLS has reduced the data dimension, 512 variables still have a computa-
tional burden on the establishment of the oyster freshness prediction model. Therefore,
three different variable screening algorithms were used to select the characteristic wave-
lengths. Competitive adaptive reweighted sampling (CARS) uses adaptive heavy weighted
sampling (ARS) to select the wavelength points with large absolute value of the regression
coefficient in the PLS model, remove the wavelengths with small weight, and use inter-
active verification to select the lowest subset of the root mean square error of prediction
(RMSECV) [25,26], which can effectively provide the optimal combination of variables. As
an intelligent optimization algorithm, the genetic algorithm (GA) uses the global search
function and continuously performs genetic iterations to achieve the best results [27]. The
ant colony optimization (ACO) method is mainly based on the way that ants search for
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food, through global cooperation between all individuals in the group, and constantly
exchange path information via pheromones to find the optimal solution [28]. As such, the
variables selected by the three variable selection algorithms were qualitatively judged by
the KNN and LDA pattern recognition models.

Table 2 shows the identification result of qualitative analysis. It was indicated that the
LDA model and KNN model can be used for the oyster freshness characteristic recognition.
Overall, the recognition effect of the LDA model is better than the KNN model. Compared
to CARS, the LDA model after ACO and GA variable screening algorithms obtains the
better results, as the recognition rate of the training set were 100%, and the recognition rate
of the prediction set were 97.22%. In addition, the number of principal component factors
of GA was less; when the principal component factor was only nine, the LDA model after
GA variable screening algorithm obtained the best classification result.

Table 2. LDA and KNN classification results of three variable screening algorithms.

Variable Screening
Algorithms

LDA KNN

PCs Rc Rp PCs K Value Rc Rp

ACO 11 100% 97.22% 6 1 99.07% 94.44%
CARS 3 90.74% 94.44% 7 1 96.30% 93.06%

GA 9 100% 97.22% 11 1 99.07% 97.22%

After SNV preprocessing, siPLS interval screening, and GA variable screening, the
pattern recognition results of visual near-infrared spectroscopy data were shown in Figure 6.
Figure 6a shows a 3D space of all of the oyster samples with different storage time, the
cumulative variance contribution rate of the first three principal components reached
97.37% (PC1 was 78.62%, PC2 was 15.79%, and PC3 was 2.96%). It can be seen from
Figure 6a that, compared with the parameters of image processing, the clusters of samples
between different categories were more clustered. The fresh oysters (0 days) could be
directly distinguished from samples which were stored at 4 ◦C for more than four days.
The LDA model and KNN model were also used to predict the storage time of oyster
samples, as shown in Figure 6b, when the number of principal component factors was nine,
100% of the calibration set samples were classified correctly, and 97.22% of the prediction set
samples were classified correctly, as indicated in Figure 6c. When the number of principal
components was 11 and the K value was 1, the best recognition rate of the prediction set
was 97.22%, and the recognition rate of the calibration set was 99.07%.
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4. Conclusions

In this work, the colorimetric sensor array and visible near-infrared spectroscopy
system were developed for oyster storage time identification. The characterization of the
VOCs in the storage process of oysters by color-sensitive sensors combined with visual
near-infrared spectroscopy could identify the freshness of oysters quickly and intuitively.
The colorimetric sensor array was used firstly to collect the VOCs. However, when the
color-sensitive sensor was exposed to the VOCs of oysters, which not only reflects as the
color change but also reflects changes in the internal structure of color-sensitive materials,
the near-infrared spectroscopy was used to analyze the VOCs information related to oyster
freshness. Furthermore, if the near-infrared spectroscopy was used directly on the oyster
samples for detection, the high water content of raw oyster samples may impact on the
performance. As such, in this study, the visible near-infrared spectroscopy system was used
to obtain the reflected spectrum data of the colorimetric sensor array. SNV was applied to
preprocess the spectrum to eliminate the effects of solid particles, light intensity variation,
and surface scattering on the spectra, and siPLS was applied to reduce the data dimension.
The variable screening algorithms (CARS, ACO and GA) were used to select the effective
wavelengths for oyster freshness detection. The results show that the GA variable screening
algorithm obtains the best classification result. Compared with a separate colorimetric
sensor array image data model, the visible near-infrared spectroscopy method exhibited
promising performance in terms of the identification of oyster storage times. On one
hand, the NIR provides more information based on the large amount variables, and in
combination with the optimization algorithm, could be also helpful in achieving better
performance. On the other hand, when the color-sensitive sensor is exposed to the VOCs of
oysters, which not only reflects the color change but also reflects changes in the internal
structure of color-sensitive materials, the NIR could collect the information of the color-
sensitive material in the invisible wavelength range. Therefore, the recognition effect was
better after adding the NIR. The fresh and stale oyster samples could be separated directly
from the PCA score plot. When the number of principal component factors was 9, 100%
of the calibration set samples were classified correctly, and 97.22% of the prediction set
samples were classified correctly in the LDA model.

Furthermore, the colorimetric sensor array composed by the color-sensitive material
modified with porous silica nanosphere is under study.
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