A Study on 3D Deep Learning-Based Automatic Diagnosis of Nasal Fractures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Data
2.3. Computational Environment
2.4. 3D CNN-Based Deep Learning Method
2.5. Performance Assessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
| CAD | computed aided diagnosis |
| CT | computed tomography |
| 3D-CNN | a 3-dimensional convolutional neural network |
| VOI | volume of interest |
| GUI | graphical user interface |
| ResNet | the residual neural network |
| TP | true-positive |
| FP | false-positive |
| TN | true-negative |
| FN | false-negative |
| ROC | the receiver operating characteristic |
| AUC | the area under the ROC curve |
| AI | artificial intelligence |
| CI | confidence interval |
| SD | standard deviation |
| p-value | probability value |
| 3D-FOV | 3-dimensional-image field of view |
References
- Hwang, K.; You, S.H.; Kim, S.G.; Lee, S.I. Analysis of Nasal Bone Fractures; A Six-year Study of 503 Patients. J. Craniofacial Surg. 2006, 17, 261–264. [Google Scholar] [CrossRef]
- Adebayo, E.T.; Ajike, O.S.; Adekeye, E.O. Analysis of the pattern of maxillofacial fractures in Kaduna, Nigeria. Br. J. Oral Maxillofac. Surg. 2003, 41, 396–400. [Google Scholar] [CrossRef]
- Rohrich, R.J.; Adams, W.P., Jr. Nasal Fracture Management: Minimizing Secondary Nasal Deformities. Plast. Reconstr. Surg. 2000, 106, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.T.; Hu, T.L.; Lai, J.B.; Chen, Y.C.; Chen, Y.R. Reconstruction of traumatic nasal deformity in Orientals. J. Plast. Reconstr. Aesthet. Surg. 2010, 63, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.X.; Shah, N.; Gupta, A. Epidemiology of Nasal Bone Fractures. Fac. Plast. Surg. Aesthet. Med. 2021, 3, 9–27. [Google Scholar] [CrossRef]
- Pinto, A.; Brunese, L. Spectrum of diagnostic errors in radiology. World J. Radiol. 2010, 2, 377–383. [Google Scholar] [CrossRef]
- Lee, C.I.; Haims, A.H.; Monico, E.P.; Brink, J.A.; Forman, H.P. Diagnostic CT scans: Assessment of patient, physician, and radiologist awareness of radiation dose and possible risks. Radiology 2004, 231, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Badgeley, M.A.; Zech, J.R.; Oakden-Rayner, L.; Glicksberg, B.S.; Liu, M.; Gale, W.; Dudley, J.T. Deep learning predicts hip fracture using confounding patient and healthcare variables. NPJ Dig. Med. 2019, 2, 31. [Google Scholar] [CrossRef] [Green Version]
- Lindsey, R.; Daluiski, A.; Chopra, S.; Lachapelle, A.; Mozer, M.; Sicular, S.; Potter, H. Deep neural network improves fracture detection by clinicians. Proc. Natl. Acad. Sci. USA 2018, 115, 11591–11596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolanu, N.; Silverstone, E.J.; Ho, B.H.; Pham, H.; Hansen, A.; Pauley, E.; Pocock, N.A. Clinical Utility of Computer-Aided Diagnosis of Vertebral Fractures from Computed Tomography Images. J. Bone Miner. Res. 2020, 35, 2307–2312. [Google Scholar] [CrossRef]
- Shen, D.; Wu, G.; Suk, H.I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [Google Scholar] [CrossRef] [Green Version]
- Ji, S.; Xu, W.; Yang, M.; Yu, K. 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intel. 2012, 35, 221–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alakwaa, W.; Nassef, M.; Badr, A. Lung cancer detection and classification with 3D convolutional neural network (3D-CNN). Lung Cancer 2017, 8, 409. [Google Scholar] [CrossRef] [Green Version]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660. [Google Scholar]
- Moon, J.; Kim, H.; Lee, B. View-point invariant 3d classification for mobile robots using a convolutional neural network. Int. J. Control Autom. Syst. 2018, 16, 2888–2895. [Google Scholar] [CrossRef]
- Qi, C.R.; Su, H.; Nießner, M.; Dai, A.; Yan, M.; Guibas, L.J. Volumetric and multi-view cnns for object classification on 3d data. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 5648–5656. [Google Scholar]
- Qiu, Z.; Yao, T.; Mei, T. Learning spatio-temporal representation with pseudo-3d residual networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5533–5541. [Google Scholar]
- Murphy, M.A. Windowing (CT). Available online: https://radiopaedia.org/articles/windowing-ct?lang=us (accessed on 23 June 2021).
- Li, Y.; Zhang, H.; Shen, Q. Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sens. 2017, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Weston, A.D.; Korfiatis, P.; Kline, T.L.; Philbrick, K.A.; Kostandy, P.; Sakinis, T.; Erickson, B.J. Automated abdominal segmentation of CT scans for body composition analysis using deep learning. Radiology 2019, 290, 669–679. [Google Scholar] [CrossRef] [PubMed]
- Karar, M.E.; Hemdan, E.E.D.; Shouman, M.A. Cascaded deep learning classifiers for computer-aided diagnosis of COVID-19 and pneumonia diseases in X-ray scans. Complex Intell. Syst. 2021, 7, 235–247. [Google Scholar] [CrossRef]
- Raj, R.J.S.; Shobana, S.J.; Pustokhina, I.V.; Pustokhin, D.A.; Gupta, D.; Shankar, K. Optimal feature selection-based medical image classification using deep learning model in internet of medical things. IEEE Access 2020, 8, 58006–58017. [Google Scholar] [CrossRef]
- Krogue, J.D.; Cheng, K.V.; Hwang, K.M.; Toogood, P.; Meinberg, E.G.; Geiger, E.J.; Pedoia, V. Automatic Hip Fracture Identification and Functional Subclassification with Deep Learning. Radiology 2020, 2, e190023. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.W.; Han, S.S.; Lee, J.W.; Oh, K.S.; Kim, N.R.; Yoon, J.P.; Kim, Y. Automated detection and classification of the proximal humerus fracture by using deep learning algorithm. Acta Orthop. 2018, 89, 468–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, L.; Yang, J.; Kuang, K.; Ni, B.; Gao, Y.; Sun, Y.; Li, M. Deep-learning-assisted detection and segmentation of rib fractures from CT scans: Development and validation of FracNet. EBioMedicine 2020, 62, 103106. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Zheng, J.; Miao, C.; Mckeown, M.J.; Wang, Z.J. 3D CNN based automatic diagnosis of attention deficit hyperactivity disorder using functional and structural MRI. IEEE Access 2017, 5, 23626–23636. [Google Scholar] [CrossRef]
- Singh, S.P.; Wang, L.; Gupta, S.; Gulyás, B.; Padmanabhan, P. Shallow 3D CNN for detecting acute brain hemorrhage from medical imaging sensors. IEEE Sens. 2020, 21, 14290–14299. [Google Scholar] [CrossRef]





| Characteristic | Summary | |
|---|---|---|
| Normal Group | Fracture Group | |
| Patients | N = 1350 | N = 1185 |
| Age, years (mean ± SD) | 45.4 ± 20.7 | 46.5 ± 18.4 |
| Sex | Male, 715; Female, 635 | Male, 642; Female, 543 |
| Dataset | ||
|---|---|---|
| Normal | Fracture | |
| Training | 864 | 758 |
| Validation | 216 | 190 |
| Test | 270 | 237 |
| AUC (95% CI) | Sensitivity (95% CI) | Specificity (95% CI) | Accuracy (95% CI) | |
|---|---|---|---|---|
| 3D-ResNet34 | 0.934 (0.927–0.941) | 0.864 (0.862–0.867) | 0.868 (0.866–0.872) | 0.862 (0.861–0.863) |
| 3D-ResNet50 | 0.945 (0.940–0.950) | 0.875 (0.866–0.884) | 0.878 (0.869–0.888) | 0.876 (0.869–0.883) |
| Classification Based on 3D-ResNets (p < 0.01) | |
|---|---|
| AUC | ) |
| Sensitivity | ) |
| Specificity | ) |
| Accuracy | ) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seol, Y.J.; Kim, Y.J.; Kim, Y.S.; Cheon, Y.W.; Kim, K.G. A Study on 3D Deep Learning-Based Automatic Diagnosis of Nasal Fractures. Sensors 2022, 22, 506. https://doi.org/10.3390/s22020506
Seol YJ, Kim YJ, Kim YS, Cheon YW, Kim KG. A Study on 3D Deep Learning-Based Automatic Diagnosis of Nasal Fractures. Sensors. 2022; 22(2):506. https://doi.org/10.3390/s22020506
Chicago/Turabian StyleSeol, Yu Jin, Young Jae Kim, Yoon Sang Kim, Young Woo Cheon, and Kwang Gi Kim. 2022. "A Study on 3D Deep Learning-Based Automatic Diagnosis of Nasal Fractures" Sensors 22, no. 2: 506. https://doi.org/10.3390/s22020506
APA StyleSeol, Y. J., Kim, Y. J., Kim, Y. S., Cheon, Y. W., & Kim, K. G. (2022). A Study on 3D Deep Learning-Based Automatic Diagnosis of Nasal Fractures. Sensors, 22(2), 506. https://doi.org/10.3390/s22020506

