From Identification to Sensing: RFID Is One of the Key Technologies in the IoT Field
Abstract
:1. Introduction
2. RFID Technology: From Identification to Sensing
2.1. A Brief History of RFID
2.2. A Glimpse of the Variety of RFID Technology
- LF (low frequency): frequencies between 125 and 134.2 kHz. The maximum detection range of a tag responding to this frequency is about 50 cm. The characteristics associated with this frequency range are: high price even with large volumes, low impact of a metallic or liquid environment on reading performance. There are several standards (ISO 18000-2, ISO 11784, ISO 14223, etc.) but the frequency ranges used are the same all over the world. This standard is used, for example, for animal tattooing or car keys.
- HF (high frequency): frequency of 13.56 MHz. The maximum detection range of a tag responding to this frequency is about 1 m. The characteristics associated with this frequency are as follows: lower price than LF tags, suitable for applications requiring contact reading without a large volume of tags to be read, global frequency (the same in all countries). Examples of applications are access control or electronic passports. Note that NFC (near field communication) belongs to this category.
- UHF (ultra-high frequency): frequencies between 864 and 928 MHz [34]. The maximum detection range of a passive tag in this frequency range is approximately 3 to 20 m, depending on the propagation conditions. The characteristics associated with this frequency range are as follows: lower price than LF and HF tags for large volumes, suitable for applications requiring reading distance and a large volume of tags to be read very quickly, tags dedicated to constrained environments (metal, liquid, etc.). The uses of this standard are, for example, logistics, item identification, traceability, tolls.
- SHF (super-high frequency): frequencies between 2.45 and 5.8 GHz. The maximum detection range of an active tag in this frequency range is about 100 m. The characteristics associated with this frequency range are as follows: relatively similar performance to UHF, high sensitivity to metal and liquid environments, directionality of tag detection. The frequency range in which SHF RFID systems operate are those which are globally unlicensed, allowing these systems to be used globally. However, these frequency bands are crowded and can be prone to interference as many devices such as cordless phones and microwave ovens use these frequencies.
2.3. Focus on UHF RFID Based on Backscattering
- Connectivity (i.e., exchange of information by wireless link): a traditional sensor integrates an RF transmitter–receiver module, whereas a tag relies on communication by retro-modulation;
- Energy (i.e., power source): a traditional sensor integrates a battery while a tag has a dedicated RF–DC converter; and, in both cases, an energy recovery unit can be added.
- Information (i.e., data): for a traditional sensor, the information transmitted is that captured or detected by the dedicated part; in the case of a sensor tag, the data includes the identifier (ID) but also the information collected, which may come either from a sensor associated with the tag (similar to the other case) or intrinsically from the tag as evoked above, e.g., a tag whose substrate (but also the antenna or the chip) is voluntarily made sensitive to the magnitude to be captured and then implicitly allows the information to be transmitted during retro-modulation.
- Actions: in one case as in the other, an actuator can drive a particular function, for example, to activate an in-switch, a luminous indicator (LED type), a sound signal, etc.
2.4. Other Possible Arguments in Favor of RFID
3. RFID Sensor Tags
3.1. Quick Look at the Types of RFID Sensor Tags That Exist
3.2. Principles of RFID Sensor Tags
3.3. Focus on the Use of RFID Sensor Tags for Health
- The identification of people, which means that throughout their journey, and whatever the length of their stay, patients are identified, and even located, especially at-risk patients who do not have authorization to leave; moreover, all care, prescribed treatments, and consumed drugs are automatically recorded.
- The identification of medical files, allowing for their traceability in order to ensure the management, archiving and storage aspects automatically and efficiently, for greater security.
- The traceability of organic tissues, samples and blood products is also automated, and consequently, made reliable.
- The management of large equipment and their maintenance in operational condition is also simplified; they can be located with a follow-up of their state (for example, ready for use, not cleaned, in service or not); the traceability of equipment throughout their life cycle is also favorable to the planning of renewals, investments, and even recycling procedures.
- Inventories, stock management and procurement are also greatly simplified, whether for drugs or medical prostheses, but also for small equipment (syringe pumps, syringes, surgical tools, etc.).
4. Conclusions and Perspective
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Xu, L.D.; He, W.; Li, S. Internet of things in industries: A survey. IEEE Trans. Ind. Inform. 2014, 10, 2233–2243. [Google Scholar] [CrossRef]
- Kumar, S.; Tiwari, P.; Zymbler, M. Internet of things is a revolutionary approach for future technology enhancement: A review. J. Big Data 2019, 6, 111. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Jha, R.K. A survey of 5G network: Architecture and emerging technologies. IEEE Access 2015, 3, 1206–1232. [Google Scholar] [CrossRef]
- Win, M.Z.; Scholtz, R.A. Impulse radio: How it works. IEEE Commun. Lett. 1998, 2, 36–38. [Google Scholar] [CrossRef]
- Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems. ET Docket No. 98–153, 22 April 2002.
- Qi, S.; Zheng, Y.; Li, M.; Liu, Y.; Qiu, J. Scalable industry data access control in RFID-enabled supply chain. IEEE/ACM Trans. Netw. 2016, 24, 3551–3564. [Google Scholar] [CrossRef]
- Nayak, R.; Singh, A.; Padhye, R.; Wang, L. RFID in textile and clothing manufacturing: Technology and challenge. Fash. Text. 2015, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Brandao, F.B.; Ferreira, J.C.E.; Schwanke, D.; Breier, G.P.; Bove, C.N.; Bove, M.C.; Raposo, A.B. RFID Technology as a life cycle management tool in the liquefied petroleum gas industry. IEEE Lat. Am. Trans. 2018, 16, 391–397. [Google Scholar] [CrossRef]
- Nappi, S.; Amendola, S.; Ramacciotti, M.; Zambonini, E.; D’Uva, N.; Camera, F.; Miozzi, C.; Occhiuzzi, C.; Marrocco, G. RFID based predictive maintenance system for chemical industry. In Proceedings of the IEEE International Workshop on Metrology for Industry 4.0 and IoT, Rome, Italy, 7–9 June 2021. [Google Scholar]
- Motroni, A.; Bernardini, F.; Vaiani, S.; Buffi, A.; Nepa, P. Performance assessment of a UHF-RFID robotic inventory system for industry 4.0. In Proceedings of the 16th European Conference on Antennas and Propagation, Madrid, Spain, 27 March–1 April 2022. [Google Scholar]
- Seyfert, R.; Maibaum, M.; Kroll, S. RFID data storage and their key role in exploitation of metallic second life materials. J. Radio Freq. Identif. 2022, 6, 14–18. [Google Scholar] [CrossRef]
- Ruiz-Garcia, L.; Lunadei, L. The role of RFID in agriculture: Applications, limitations, and challenges. Comput. Electron. Agric. 2011, 79, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Wasson, T.; Choudhury, T.; Sharma, S.; Kumar, P. Integration of RFID and Sensor in Agriculture using IOT. In Proceedings of the International Conference on Smart Technologies for Smart Nation, Bengaluru, India, 17–19 August 2017. [Google Scholar]
- Rayhana, R.; Xiao, G.; Liu, Z. RFID sensing technology for smart agriculture. IEEE Instrum. Meas. Mag. 2021, 24, 50–60. [Google Scholar] [CrossRef]
- Amendola, S.; Lodato, R.; Manzari, S.; Occhiuzzi, C.; Marrocco, G. RFID technology for IoT-based personal healthcare in smart spaces. IEEE Internet Things J. 2014, 1, 144–152. [Google Scholar] [CrossRef]
- Catarinucci, L.; Donno, D.; Mainetti, L.; Palano, L.; Patrono, L.; Stefanizzi, M.L.; Tarricone, L. An IoT-aware architecture for smart healthcare systems. IEEE Internet Things J. 2015, 2, 515–526. [Google Scholar] [CrossRef]
- Riazul Islam, S.M.; Kwak, D.; Humaun Kabir, M.D.; Hossain, M.; Kwak, K.-S. The internet of things for health care: A comprehensive survey. IEEE Access 2015, 3, 678–708. [Google Scholar] [CrossRef]
- Baker, S.B.; Xiang, W.; Atkinson, I. Internet of things for smart healthcare: Technologies, challenges, and opportunities. IEEE Access 2017, 5, 26521–26544. [Google Scholar] [CrossRef]
- Duroc, Y.; Tedjini, S. RFID: A key technology for humanity. Comptes Rendus Phys. 2018, 19, 64–71. [Google Scholar] [CrossRef]
- Inserra, D.; Hu, W.; Wen, G. Antenna array synthesis for RFID-based electronic toll collection. IEEE Trans. Antennas Propag. 2018, 66, 4596–4605. [Google Scholar] [CrossRef]
- Kolaja, J.; Ehlerova, J.K. Effectivity of sports timing RFID system, field study. In Proceedings of the International Conference on RFID Technology and Applications, Pisa, Italy, 25–27 September 2019. [Google Scholar]
- Brown, L. A Radar history of World War II: Technical and Military Imperatives; Institute of Physics Publishing: Bristol, UK, 2000; p. 129. [Google Scholar]
- Stockman, H. Communication by means of reflected power. Proc. IRE 1948, 36, 1196–1204. [Google Scholar] [CrossRef]
- Nikitin, P. Leon Theremin (Lev Termen). IEEE Antennas Propag. Mag. 2012, 54, 252–257. [Google Scholar] [CrossRef]
- Walton, C.A. Portable Radio Frequency Emitting Identifier. U.S. Patent 4.384.288, 17 May 1983. [Google Scholar]
- Want, R. Enabling ubiquitous sensing with RFID. Computer 2004, 37, 84–86. [Google Scholar] [CrossRef]
- Idtechex. Available online: https://www.idtechex.com/en/research-report/rfid-forecasts-players-and-opportunities-2017–2027/546 (accessed on 22 August 2022).
- Abiresearch. Available online: https://www.abiresearch.com/press/the-rfid-market-will-be-worth-over-70-billion-acro/ (accessed on 22 August 2022).
- Cook, B.S.; Le, T.; Palacios, S.; Traille, A.; Tentzeris, M.M. Only skin deep: Inkjet-printed zero-power sensors for large-scale RFID-integrated smart skins. IEEE Microw. Mag. 2013, 14, 103–114. [Google Scholar] [CrossRef]
- Kim, S.; Mariotti, C.; Alimenti, F.; Mezzanotte, P.; Georgiadis, A.; Collado, A.; Roselli, L.; Tentzeris, M.M. No battery required: Perpetual RFID-enabled wireless sensors for cognitive intelligence applications. IEEE Microw. Mag. 2013, 14, 66–77. [Google Scholar] [CrossRef]
- Dobkin, D.M. The RF in RFID: Passive UHF RFID in Practice; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Paret, D. RFID at Ultra and Super High Frequencies: Theory and Applications; John Wiley and Sons: Chichester, UK, 2009. [Google Scholar]
- Finkenzeller, K. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication, 3rd ed.; John Wiley and Sons: Chichester, UK, 2010. [Google Scholar]
- GS1.org. Available online: https://www.gs1.org/docs/epc/uhf_regulations.pdf (accessed on 22 August 2022).
- Tedjini, S.; Karmarkar, N.; Perret, E.; Vena, A.; Koswatta, R.; E-Azim, R. Hold the chips: Chipless technology, an alternative technique for RFID. IEEE Microw. Mag. 2013, 14, 56–65. [Google Scholar] [CrossRef]
- Barbot, N.; Rance, O.; Perret, E. Classical RFID versus chipless RFID read range: Is linearity a friend of a foe? IEEE Trans. Microw. Theory Tech. 2021, 69, 4199–4208. [Google Scholar] [CrossRef]
- Mc Gee, K.; Anandarajah, P.; Collins, D. A review of chipless remote sensing solutions based on RFID technology. Sensors 2019, 19, 4829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Matbouly, H.; Tedjini, S.; Zannas, K.; Duroc, Y. Chipless sensing system compliant with the standard radio frequency regulations. IEEE J. RFID 2019, 3, 83–90. [Google Scholar] [CrossRef]
- Nikitin, P.V.; Rao, K.V.S. Theory and measurement of backscattering from RFID tags. IEEE Antennas Propag. Mag. 2006, 48, 212–218. [Google Scholar] [CrossRef]
- GS1. EPCTM Radio-Frequency Identity Protocols Generation-2 UHF RFID Standard, Specification for RFID Air Interface Protocol for Communications at 860–960 MHz; GS1: Bruxelles, Belgium, 2018. [Google Scholar]
- Duroc, Y.; Kaddour, D. RFID potential impacts and future evolution for green projects. Energy Procedia J. 2012; 18, 91–98. [Google Scholar]
- Tételin, C. RFID and Privacy Impact Assessment (PIA). In Proceedings of the Journées Scientifiques URSI-France, Paris, France, 25–26 March 2014. [Google Scholar]
- Caizzone, S.; di Giampaolo, E. Passive RFID Deformation Sensor for Concrete Structures. In Proceedings of the IEEE International Conference RFID Technology and Applications, Tampere, Finland, 8–9 September 2014. [Google Scholar]
- Caizzone, S.; Di Giampaolo, E.; Marrocco, G. Wireless crack monitoring by stationary phase measurements from coupled RFID tags. IEEE Trans. Antennas Propag. 2014, 62, 6412–6419. [Google Scholar] [CrossRef] [Green Version]
- Di Natale, A.; di Carlofelice, A.; di Giampaolo, E. A crack mouth opening displacement gauge made with passive UHF RFID technology. IEEE Sens. J. 2022, 22, 174–181. [Google Scholar] [CrossRef]
- Dey, S.; Salim, O.; Masoumi, H.; Karmakar, N.C. A novel UHF RFID sensor-based crack detection technique for coal mining conveyor belt. IEEE J. RFID 2022, 6, 19–30. [Google Scholar] [CrossRef]
- Inserra, D.; Hu, W.; LI, Z.; Li, G.; Zhao, F.; Yang, Z.; Wen, G. Screw relaxing detection with UHF RFID tag. IEEE Access 2020, 8, 78553–78564. [Google Scholar] [CrossRef]
- Virtanen, J.; Ukkonen, L.; Björninen, T.; Elsherbeni, A.Z.; Sydänheimo, L. Inkjet-printed humidity sensor for passive UHF RFID systems. IEEE Trans. Instrum. Meas. 2011, 60, 2768–2777. [Google Scholar] [CrossRef]
- Chang, K.; Kim, Y.H.; Kim, Y.J.; Yoon, Y.J. Functional antenna integrated with relative humidity sensor using synthesised polyimide for passive RFID sensing. Electron. Lett. 2007, 43, 259–260. [Google Scholar] [CrossRef]
- Gao, J.; Siden, J.; Nilsson, H.-E.; Gulliksson, M. Printed humidity sensor with functionality for passive RFID tags. IEEE Sens. J. 2013, 13, 1824–1834. [Google Scholar] [CrossRef]
- Amin, E.M.; Bhuiyan, M.S.; Karmarkar, N.C.; Winther-Jensen, B. Development of a low cost printable chipless RFID humidity sensor. IEEE Sens. J. 2014, 14, 140–149. [Google Scholar] [CrossRef]
- Sauer, S.; Fischer, W.-J. An irreversible single-use humidity-threshold monitoring sensor principle for wireless passive sensor solutions. IEEE Sens. J. 2016, 16, 6920–6930. [Google Scholar] [CrossRef]
- Solar, H.; Beriain, A.; Zalbide, I.; D’Entremont, E.; Berenguer, R. A robust −40° to +150 °C Wireless Rotor Temperature Monitoring System Based on a Fully Passive UHF RFID Sensor Tag. In Proceedings of the IEEE International Microwave Symposium, Tampa, FL, USA, 1–6 June 2014. [Google Scholar]
- Rima, S.; Georgiadis, A.; Collado, A.; Goncalves, R.; Carvalho, N. Passive UHF RFID Enabled Temperature Sensor on Cork Substrate. In Proceedings of the IEEE International Conference RFID Technology and Applications, Tampere, Finland, 8–9 September 2014. [Google Scholar]
- Zannas, K.; El Matbouly, H.; Duroc, Y.; Tedjini, S. Self-tuning RFID tag: A new approach for temperature sensing. IEEE Trans. Microw. Theory Tech. 2018, 66, 5885–5893. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, G.Y. UHF RFID tag antenna-based sensing for corrosion detection & characterization using principal component analysis. IEEE Trans. Antennas Propag. 2016, 64, 4405–4414. [Google Scholar]
- Zhao, A.; Zhang, J.; Tian, G.Y. Miniaturization of UHF RFID tag antenna sensors for corrosion characterization. IEEE Sens. J. 2017, 17, 7908–7915. [Google Scholar] [CrossRef]
- Bouzaffour, K.; Lescop, B.; Talbot, P.; Gallée, F.; Rioual, S. Development of an embedded UHF-RFID corrosion sensor for monitoring corrosion of steel in concrete. IEEE Sens. J. 2021, 21, 12306–12312. [Google Scholar] [CrossRef]
- Manzari, S.; Marrocco, G. Modeling and applications of a chemical-loaded UHF RFID sensing antenna with tuning capability. IEEE Trans. Antennas Propag. 2014, 62, 94–101. [Google Scholar] [CrossRef]
- Manzari, S.; Catini, A.; Pomarico, G.; Di Natale, C.; Marrocco, G. Development of an UHF RFID chemical sensor array for battery-less ambient sensing. IEEE Sens. J. 2014, 14, 3616–3623. [Google Scholar] [CrossRef]
- Amin, E.M.; Saha, J.K.; Karmakar, N.C. Smart sensing materials for low-cost chipless RFID sensor. IEEE Sens. J. 2014, 14, 2198–2207. [Google Scholar] [CrossRef]
- Wagih, M.; Shi, J. Wireless ice detection and monitoring using flexible UHF RFID tags. IEEE Sens. J. 2021, 21, 18715–18724. [Google Scholar] [CrossRef]
- Zannas, K.; El Matbouly, H.; Duroc, Y.; Tedjini, S. A flipping UHF RFID sensor-tag for metallic environment compliant with ETSI and FCC bands. IEEE Trans. Antennas Propag. 2021, 69, 1283–1292. [Google Scholar] [CrossRef]
- Panunzio, N.; Occhiuzzi, C.; Marrocco, G. Propagation modeling inside the international space station for the automatic monitoring of astronauts by means of epidermal UHF-RFID sensors. IEEE J. RFID 2021, 5, 174–181. [Google Scholar] [CrossRef]
- Colella, R.; Tarricone, L.; Catarinucci, L. SPARTACUS: Self-powered augmented RFID tag for autonomous computing and ubiquitous sensing. IEEE Trans. Antennas Propag. 2015, 63, 2272–2281. [Google Scholar] [CrossRef]
- Tedjini, S.; Andia, G.; Zurita, M.; Freire, R.C.S.; Duroc, Y. Augmented RFID Tags. In Proceedings of the IEEE Radio and Wireless Week: IEEE Topical Conference on Wireless Sensors and Sensor Networks, Austin, TX, USA, 24–27 January 2016. [Google Scholar]
- Zannas, Z.; El Matbouly, H.; Duroc, Y.; Tedjini, S. Augmented RFID tags: From identification to sensing. In Wireless Power Transmission for Sustainable Electronics; Carvalho, N.B., Georgiadis, A., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 223–246. [Google Scholar]
- Occhiuzzi, C.; Caizzone, S.; Marrocco, G. Passive UHF RFID antennas for sensing applications: Principles, methods, and classifications. IEEE Antennas Propag. Mag. 2013, 55, 14–34. [Google Scholar] [CrossRef] [Green Version]
- Occhiuzzi, C.; Marrocco, G. Constrained-design of passive RFID sensor antennas. IEEE Trans. Antennas Propag. 2013, 61, 2972–2980. [Google Scholar] [CrossRef] [Green Version]
- Catarinucci, L.; Colella, R.; Patrono, L.; Tarricone, L. Enhanced UHF RFID sensor-tag. IEEE Microw. Wirel. Compon. Lett. 2013, 23, 49–51. [Google Scholar] [CrossRef]
- Grosinger, J.; Bosch, W. A passive RFID sensor tag antenna transducer. In Proceedings of the European Conference Antennas and Propagation, The Hague, The Netherlands, 6–11 April 2014. [Google Scholar]
- Abdulhadi, A.E.; Abahri, R. Multi-port UHF RFID tag antenna for enhanced energy harvesting of self-powered wireless sensors. IEEE Trans. Ind. Inform. 2015, 12, 801–808. [Google Scholar] [CrossRef]
- Costanzo, A.; Masotti, D.; Fantuzzi, M.; Del Prete, M. Co-design strategies for energy-efficient UWB and UHF wireless systems. IEEE Trans. Microw. Theory Tech. 2017, 65, 1852–1863. [Google Scholar] [CrossRef]
- Andia Vera, G.; Nawale, S.; Duroc, Y.; Tedjini, S. Read range enhancement by harmonic energy in passive UHF RFID. IEEE Microw. Wirel. Compon. Lett. 2015, 25, 627–629. [Google Scholar] [CrossRef] [Green Version]
- Sample, A.P.; Yeager, J.; Powledge, P.S. Design of an RFID-based battery-free programmable sensing platform. IEEE Trans. Instrum. Meas. 2008, 57, 2608–2615. [Google Scholar] [CrossRef]
- De Donno, D.; Catarinucci, L.; Tarricone, L. A battery-assisted sensor-enhanced RFID tag enabling heterogeneous wireless sensor networks. IEEE Sens. J. 2014, 14, 1048–1055. [Google Scholar] [CrossRef]
- UHF RFID Gen2 SL900A Sensory Tag IC. Available online: http://ams.com (accessed on 29 August 2022).
- EasyToLog RFID Tag. Available online: http://www.caenrfid.it (accessed on 29 August 2022).
- SensTAG RFID Tag. Available online: http://www.phaseivengr.com (accessed on 29 August 2022).
- Islam, M.M.; Rasilainen, K.; Viikari, V. Implementation of sensor RFID: Carrying sensor information in the modulation frequency. IEEE Trans. Microw. Theory Tech. 2015, 63, 2672–2681. [Google Scholar] [CrossRef] [Green Version]
- Talla, V.; Smith, J.R. Hybrid Analog-Digital Backscatter: A New Approach for Battery-Free Sensing. In Proceedings of the IEEE International Conference RFID, Orlando, FL, USA, 30 April–2 May 2013. [Google Scholar]
- El Matbouly, H.; Zannas, K.; Duroc, Y.; Tedjini, S. Analysis and assessments of time delay constraints for RFID tag-sensor communication link. IEEE Sens. J. 2017, 17, 2174–2181. [Google Scholar] [CrossRef]
- Caizzone, S.; Di Giampaolo, E.; Marrocco, G. Setup-independent phase-based sensing by UHF RFID. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2408–2411. [Google Scholar] [CrossRef]
- RAIN RFID. Available online: https://rainrfid.org/healthcare/ (accessed on 22 August 2022).
- Ramos, V.; Suarez, O.J.; Febles Santana, V.M.; Suarez Rodriguez, D.S.; Aguirre, E.; De Miguel-Bilbao, S.; Marina, P.; Lopez-Calleja, L.E.R.; Hernandez-Armas, J.A. Electromagnetic characterization of UHF-RFID fixed reader in healthcare centers related to the personal and labor health. IEEE Access 2022, 10, 28614–28630. [Google Scholar] [CrossRef]
- Nappi, S.; Gargale, L.; Naccarata, F.; Valentini, P.V.; Marrocco, G. A fractal-RFID based sensing tattoo for the early detection of cracks in implanted metal prostheses. IEEE J. Electromagn. RF Microw. Med. Biol. 2022, 6, 29–40. [Google Scholar] [CrossRef]
- Malik, N.A.; Sant, P.; Ajmal, T.; Ur-Rehman, M. Implantable antennas for bio-medical applications. IEEE J. Electromagn. RF Microw. Med. Biol. 2021, 5, 84–96. [Google Scholar] [CrossRef]
- Chavez-Santiago, R.; Sayrafian-Pour, K.; Takizawa, K.; Wang, J.; Balasingham, I.; Li, H.-B. Propagation models for 802.15.6 standardization of implant communication in body area networks. IEEE Commun. Mag. 2013, 5, 80–87. [Google Scholar] [CrossRef]
- Pei, J.; Fan, J.; Zheng, R. Protecting wearable UHF RFID tags with electro-textile antennas. IEEE Antennas Propag. Mag. 2021, 51, 43–50. [Google Scholar] [CrossRef]
- Lejarreta-Andrés, J.; Melià-Seguí, J.; Bhattacharyya, R.; Vilajosana, X.; Sarma, S.E. Towards low-cost RF-based bulk fabric classification for the textile industry. IEEE Sens. J. 2022, 16, 16586–16594. [Google Scholar] [CrossRef]
- Dang, Q.H.; Chen, S.J.; Ranasinghe, D.C.; Fumeaux, C. Modular integration of a passive RFID sensor with wearable textile antennas for patient monitoring. IEEE Trans. Compon. Packag. Manuf. Technol. 2020, 10, 1979–1988. [Google Scholar] [CrossRef]
- Horne, R.; Batchelor, J.C. A framework for a low power on body real-time sensor system using UHF RFID. IEEE J. RFID 2020, 4, 391–397. [Google Scholar] [CrossRef]
- Benouakta, S.; Hutu, F.; Duroc, Y. UHF RFID temperature sensor-tag integrated into a textile yarn. Sensors 2022, 22, 818. [Google Scholar] [CrossRef]
- Lin, J.C. Mobile-phone RF/Microwave exposure and memory performance score in adolescents. Radio Sci. Bull. 2018, 366, 32–35. [Google Scholar]
- Devadas, S.; Suh, E.; Paral, S.; Sowell, R.; Ziola, T.; Khandelwal, V. Design and implementation of PUF-based “unclonable” RFID ICs for anti-counterfeiting and security applications. In Proceedings of the IEEE International Conference on RFID, Las Vegas, NV, USA, 16–17 April 2008. [Google Scholar]
- Zhu, F.; Li, P.; Xu, H.; Wang, R. Lightweight RFID mutual authentication protocol with PUF. Sensors 2019, 19, 2957. [Google Scholar]
- Hotte, D.; Siragusa, R.; Duroc, Y.; Tedjini, S. Radar cross-section measurement in millimeter-wave for passive MMID tags. IET Int. J. Microw. 2015, 9, 1733–1739. [Google Scholar]
- Boaventura, A.J.S.; Carvalho, N. Extending Reading Range of Commercial RFID Readers. IEEE Trans. Microw. Theory Tech. 2013, 61, 633–640. [Google Scholar] [CrossRef]
- Boaventura, A.J.S.; Carvalho, N.B. The Design of a High-Performance Multisine RFID Reader. IEEE Trans. Microw. Theory Tech. 2017, 65, 3389–3400. [Google Scholar] [CrossRef]
- Merakeb, Y.; Ezzedine, H.; Huillery, J.; Bréard, A.; Touhami, R.; Duroc, Y. Experimental platform for waveform optimization in passive UHF RFID systems. Int. J. RF Microw. Comput. Aided Eng. 2020, 30, e22376. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Z.; Meng, Z.; Zhou, W.; Gao, N.; Zhang, Z. UHF-HF integrated RFID sensor: A novel information interface for industrial integration. IEEE Sens. J. 2022, 22, 15477–15487. [Google Scholar] [CrossRef]
- Nikitin, P.V.; Ramamurthy, S.; Martinez, R.; Rao, K.V.S. Passive tag-to-tag communication. In Proceedings of the IEEE International Conference on RFID, Orlando, FL, USA, 3–5 April 2012. [Google Scholar]
- Lassouaoui, L.; Hutu, F.; Duroc, Y.; Villemaud, G. Performance evaluation of passive tag to tag communications. IEEE Access 2022, 10, 18832–18842. [Google Scholar] [CrossRef]
Resonance Sensor | SAW 1 RFID | Intermodulation Sensor | RFID + Digital Sensor | RFID + Sensitive Antenna | |
---|---|---|---|---|---|
Communication | Analog | Analog | Analog | Digital | Digital |
Sensing | Analog | Analog | Analog | Digital | Analog |
ID | No | Yes | Yes | Yes | Yes |
Memory | No | No | No | Yes | Yes |
Auto-collision | No | No | No | Yes | Yes |
Environment intensive | No | Yes | Yes | Yes | No |
Read-out distance | Small | Large | Large | Small | Large |
Sensing element | Generic | Special | Generic | Generic | Special |
Reader device | Special | Special | Special | Standard | Standard |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duroc, Y. From Identification to Sensing: RFID Is One of the Key Technologies in the IoT Field. Sensors 2022, 22, 7523. https://doi.org/10.3390/s22197523
Duroc Y. From Identification to Sensing: RFID Is One of the Key Technologies in the IoT Field. Sensors. 2022; 22(19):7523. https://doi.org/10.3390/s22197523
Chicago/Turabian StyleDuroc, Yvan. 2022. "From Identification to Sensing: RFID Is One of the Key Technologies in the IoT Field" Sensors 22, no. 19: 7523. https://doi.org/10.3390/s22197523
APA StyleDuroc, Y. (2022). From Identification to Sensing: RFID Is One of the Key Technologies in the IoT Field. Sensors, 22(19), 7523. https://doi.org/10.3390/s22197523