Opto Field-Effect Transistors for Detecting Quercetin–Cu2+ Complex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Detection Procedure
2.3. Measurement Setup
3. Results and Discussion
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization; International Atomic Energy Association; Food and Agriculture Organization (FAO). Trace Elements in Human Nutrition and Health; World Health Organization: Geneva, Switzerland, 1996. [Google Scholar]
- Liu, Y.; Guo, M. Studies on transition metal-quercetin complexes using electrospray ionization tandem mass spectrometry. Molecules 2015, 20, 8583–8594. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Yang, S.; Lu, W.; Gao, B.; Xu, L.; Sun, X.; Jiang, D.; Xu, H.-J.; Ma, M.; Cao, F. A novel fluorescence “turn off-on” nano-sensor for detecting Cu2+ and cysteine in living cells. J. Photochem. Photobiol. A Chem. 2018, 362, 14–20. [Google Scholar] [CrossRef]
- da Silva, W.M.B.; de Oliveira Pinheiro, S.; Alves, D.R.; de Menezes, J.; Magalhaes, F.E.A.; Silva, F.C.O.; Silva, J.; Marinho, E.S.; de Morais, S.M. Synthesis of quercetin-metal complexes, in vitro and in silico anticholinesterase and antioxidant evaluation, and in vivo toxicological and anxiolitic activities. Neurotox. Res. 2020, 37, 893–903. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, Y.; Wang, Y.; Xu, M.; Hu, X. UV-Vis spectroscopy combined with chemometric study on the interactions of three dietary flavonoids with copper ions. Food Chem. 2018, 263, 208–215. [Google Scholar] [CrossRef]
- Pekal, A.; Biesaga, M.; Pyrzynska, K. Interaction of quercetin with copper ions: Complexation, oxidation and reactivity towards radicals. Biometals 2011, 24, 41–49. [Google Scholar] [CrossRef]
- Tapiero, H.; Townsend, D.M.; Tew, K.D. Trace elements in human physiology and pathology. Copper. Biomed. Pharmacother. 2003, 57, 386–398. [Google Scholar] [CrossRef]
- Ravichandran, R.; Rajendran, M.; Devapiriam, D. Antioxidant study of quercetin and their metal complex and determination of stability constant by spectrophotometry method. Food Chem. 2014, 146, 472–478. [Google Scholar] [CrossRef]
- de Castilho, T.S.; Matias, T.B.; Nicolini, K.P.; Nicolini, J. Study of interaction between metal ions and quercetin. Food Sci. Hum. Wellness 2018, 7, 215–219. [Google Scholar] [CrossRef]
- Kalinowska, M.; Lewandowska, H.; Pruszyński, M.; Świderski, G.; Gołębiewska, E.; Gryko, K.; Braun, J.; Borkowska, M.; Konieczna, M.; Lewandowski, W. Co(II) complex of quercetin–spectral, anti-/pro-oxidant and cytotoxic activity in hacat cell lines. Appl. Sci. 2021, 11, 9244. [Google Scholar] [CrossRef]
- Malesev, D.; Kuntic, V. Investigation of metal-flavonoid chelates and the determination of flavonoids via metal-flavonoid complexing reactions. J. Serb. Chem. Soc. 2007, 72, 921–939. [Google Scholar] [CrossRef]
- Lewis, T.; Wallace, W.; Peterson, F.D.; Rafferty, S.; Martic, S. Reactivities of quercetin and metallo-quercetin with superoxide anion radical and molecular oxygen. Electrochem. Sci. Adv. 2021, 2, e2100054. [Google Scholar] [CrossRef]
- Dai, P.; Gao, A.; Lu, N.; Li, T.; Wang, Y. A back-gate controlled silicon nanowire sensor with sensitivity improvement for DNA and ph detection. Jpn. J. Appl. Phys. 2013, 52, 121301. [Google Scholar] [CrossRef]
- Wu, T.; Alharbi, A.; You, K.D.; Kisslinger, K.; Stach, E.A.; Shahrjerdi, D. Experimental study of the detection limit in dual-gate biosensors using ultrathin silicon transistors. ACS Nano 2017, 11, 7142–7147. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, A.G.; Shafi, N. Liquid gate and back gate capacitive coupling effects in ph sensing performance of finfets. Silicon 2022. [Google Scholar] [CrossRef]
- Seo, G.; Lee, G.; Kim, M.J.; Baek, S.H.; Choi, M.; Ku, K.B.; Lee, C.S.; Jun, S.; Park, D.; Kim, H.G.; et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 2020, 14, 5135–5142. [Google Scholar] [CrossRef]
- Zhang, H.; Kikuchi, N.; Ohshima, N.; Kajisa, T.; Sakata, T.; Izumi, T.; Sone, H. Design and fabrication of silicon nanowire-based biosensors with integration of critical factors: Toward ultrasensitive specific detection of biomolecules. ACS Appl. Mater. Interfaces 2020, 12, 51808–51819. [Google Scholar] [CrossRef]
- Laksana, P.J.B.; Tsai, L.-C.; Wei, T.-Y.; Lan, P.-C.; Chang-Liao, K.-S.; Moodley, M.K.; Chen, C.-D. A dual function electro-optical silicon field-effect transistor molecular sensor. J. Mater. Chem. C 2021, 9, 14286–14293. [Google Scholar] [CrossRef]
- Zhang, A.; Lieber, C.M. Nano-bioelectronics. Chem. Rev. 2016, 116, 215–257. [Google Scholar] [CrossRef]
- Hu, X.; Li, S.; Jiang, Z.; Yang, X. Photoelectrical properties investigated on individual si nanowires and their size dependence. Nanoscale Res. Lett. 2021, 16, 18. [Google Scholar] [CrossRef]
- Baek, E.; Rim, T.; Schutt, J.; Baek, C.K.; Kim, K.; Baraban, L.; Cuniberti, G. Negative photoconductance in heavily doped Si nanowire field-effect transistors. Nano Lett. 2017, 17, 6727–6734. [Google Scholar] [CrossRef]
- Swinehart, D.F. The beer-lambert law. J. Chem. Educ. 1962, 39, 333. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laksana, P.J.B.; Tsai, L.-C.; Lin, C.-C.; Chang-Liao, K.-S.; Moodley, M.K.; Chen, C.-D. Opto Field-Effect Transistors for Detecting Quercetin–Cu2+ Complex. Sensors 2022, 22, 7219. https://doi.org/10.3390/s22197219
Laksana PJB, Tsai L-C, Lin C-C, Chang-Liao K-S, Moodley MK, Chen C-D. Opto Field-Effect Transistors for Detecting Quercetin–Cu2+ Complex. Sensors. 2022; 22(19):7219. https://doi.org/10.3390/s22197219
Chicago/Turabian StyleLaksana, Pradhana Jati Budhi, Li-Chu Tsai, Chang-Cheng Lin, Kuei-Shu Chang-Liao, Mathew K. Moodley, and Chii-Dong Chen. 2022. "Opto Field-Effect Transistors for Detecting Quercetin–Cu2+ Complex" Sensors 22, no. 19: 7219. https://doi.org/10.3390/s22197219
APA StyleLaksana, P. J. B., Tsai, L.-C., Lin, C.-C., Chang-Liao, K.-S., Moodley, M. K., & Chen, C.-D. (2022). Opto Field-Effect Transistors for Detecting Quercetin–Cu2+ Complex. Sensors, 22(19), 7219. https://doi.org/10.3390/s22197219