A Virtual Electronic Nose for the Efficient Classification and Quantification of Volatile Organic Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gas Sensors
2.2. Operation of the Sensors and Experimental Setup
2.3. Gas Measurements
2.4. Data Evaluation
3. Results and Discussion
3.1. Discrimination of Formaldehyde, Formic Acid, and Acetic Acid
3.2. Classification of Different Concentrations of Formaldehyde, Formic Acid, and Acetic Acid
3.3. Quantification of Formaldehyde, Formic Acid, and Acetic Acid
3.4. Comparison with a Best-in-Class Commercial Gas Sensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Global Air Quality Guidelines; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Jung, H.-T. The Present and Future of Gas Sensors. ACS Sens. 2022, 7, 912–913. [Google Scholar] [CrossRef]
- Heilan, G.; Mollwo, E.; Stöckmann, F. Electronic Processes in Zinc Oxide. Solid State Phys. 1959, 8, 191–323. [Google Scholar]
- Seiyama, T.; Kato, A.; Fujiishi, K.; Nagatani, M. A new detector for gaseous components using semiconductive thin films. Anal. Chem. 1962, 34, 1502. [Google Scholar] [CrossRef]
- Bergveld, P. Development, Operation, and Application of the Ion-Sensitive Field-Effect Transistor as a Tool for Electrophysiology. IEEE Trans. Biomed. Eng. 1972, 19, 342–351. [Google Scholar] [CrossRef]
- Lundström, I.; Shivaraman, S.; Svensson, C.; Lundkvist, L. A Hydrogen−Sensitive MOS Field−Effect transistor. Appl. Phys. Lett. 1975, 26, 55. [Google Scholar] [CrossRef]
- Williams, D.E. Solid State Gas Sensors; Moseley, P.T., Tofield, B.C., Eds.; Adam Hilger: Bristol, UK, 1987. [Google Scholar]
- Sberveglieri, G. Gas Sensors: Principles, Operation, and Developments; Springer-Science & Business Media: Berlin, Germany, 1992. [Google Scholar]
- Gerblinger, J.; Hardtl, K.H.; Meixner, H.; Aigner, R. High-Temperature Microsensors. In Sensors Set: A Comprehensive Survey; Gopel, W., Ed.; VCH-Verlag: Weinheim, Germany, 1995; p. 181. [Google Scholar]
- Shimizu, Y.; Egashira, M. Basic Aspects and Challenges of Semiconductor Gas Sensors. MRS Bull. 1999, 24, 18–24. [Google Scholar] [CrossRef]
- Then, D.; Ziegler, C. Cantilever-Based Sensors. In Encyclopedia of Nanoscience and Nanotechnology; Nalwa, H.S., Ed.; American Scientific Publishers: Valencia, Spain, 2004; p. 499. [Google Scholar]
- Gurlo, A.; Bârsan, N.; Weimar, U. Gas Sensors Based on Semiconductiong Metal Oxides. In Metal Oxides: Chemistry and Applications; Fierro, J.L.G., Ed.; CRC Press: Boca Raton, FL, USA, 2004; p. 683. [Google Scholar]
- Yamazoe, N. Toward Innovations of Gas Sensor Technology. Sens. Actuators B Chem. 2005, 108, 2–14. [Google Scholar] [CrossRef]
- Lundström, I.; Sundgren, H.; Winquist, F.; Eriksson, M.; Krantz-Rülcker, C.; Lloyd-Spetz, A. Twenty-Five Years of Field Effect Gas Sensor Research in Linköping. Sens. Actuators B Chem. 2007, 121, 247–262. [Google Scholar] [CrossRef]
- Huang, X.-J.; Choi, Y.-K. Chemical Sensors Based on Nanostructured Materials. Sens. Actuators B Chem. 2007, 122, 659–671. [Google Scholar] [CrossRef]
- Jimenez-Cadena, G.; Riu, J.; Xavier Rius, F. Gas Sensors Based on Nanostructured Materials. Analyst 2007, 132, 1083–1099. [Google Scholar] [CrossRef]
- Yamazoe, N.; Shimanoe, K. Receptor Function and Response of Semiconductor Gas Sensor. J. Sens. 2009, 2009, 875704. [Google Scholar] [CrossRef]
- Aleixandre, M.; Gerboles, M. Review of Small Commercial Sensors for Indicative Monitoring of Ambient Gas. Chem. Eng. Trans. 2012, 30, 169–174. [Google Scholar]
- Kim, H.-J.; Lee, J.-H. Highly Sensitive and Selective Gas Sensors using P-Type Oxide Semiconductors: Overview. Sens. Actuators B Chem. 2014, 192, 607–627. [Google Scholar] [CrossRef]
- Neri, G. First Fifty Years of Chemoresistive Gas Sensors. Chemosensors 2015, 3, 1–20. [Google Scholar] [CrossRef]
- Chmela, O.; Sadílek, J.; Domènech-Gil, G.; Samà, J.; Somer, J.; Mohan, R.; Romano-Rodríguez, A.; Hubálek, J.; Vallejos, S. Selectively Arranged Single-Wire Based Nanosensor Array Systems for Gas Monitoring. Nanoscale 2018, 10, 9087–9096. [Google Scholar] [CrossRef]
- Domènech-Gil, G.; Gràcia, I.; Cané, C.; Romano-Rodríguez, A. Nitrogen Dioxide Selective Sensor for Humid Environments Based on Octahedral Indium Oxide. Front. Sens. 2021, 2, 672516. [Google Scholar] [CrossRef]
- Baur, T.; Amann, J.; Schultealbert, C.; Schütze, A. Field Study of Metal Oxide Semiconductor Gas Sensors in Temperature Cycled Operation for Selective VOC Monitoring in Indoor Air. Atmosphere 2021, 12, 647. [Google Scholar] [CrossRef]
- Persaud, K.; Dodd, G. Analysis of Discrimination Mechanisms in the Mammalian Olfactory System using a Model Nose. Nature 1982, 299, 352. [Google Scholar] [CrossRef]
- Wilson, A.; Baietto, M. Applications and Advances in Electronic-Nose Technologies. Sensors 2009, 9, 5099. [Google Scholar] [CrossRef]
- Domènech-Gil, G.; Hrachowina, L.; Pardo, A.; Seifner, M.S.; Gràcia, I.; Cané, C.; Barth, S.; Romano-Rodríguez, A. Localized and In-Situ Integration of Different Nanowire Materials for Electronic Nose Applications. Proceedings 2018, 2, 957. [Google Scholar]
- Chen, J.; Gu, J.; Zhang, R.; Mao, Y.; Tian, S. Freshness Evaluation of Three Kinds of Meats Based on the Electronic Nose. Sensors 2019, 19, 605. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A. Application of electronic-nose technologies and VOC-biomarkers for the noninvasive early diagnosis of gastrointestinal diseases. Sensors 2018, 18, 2613. [Google Scholar] [CrossRef]
- Nurputra, D.K.; Kusumaatmaja, A.; Hakim, M.S.; Hidayat, S.N.; Julian, T.; Sumanto, B.; Mahendradhata, Y.; Saktiawati, A.M.I.; Wasisto, H.S.; Triyana, K. Fast and noninvasive electronic nose for sniffing out COVID-19 based on exhaled breath-print recognition. NPJ Digit. Med. 2022, 5, 115. [Google Scholar] [CrossRef] [PubMed]
- Tonezzer, M.; Le, D.T.T.; Duy, L.V.; Hoa, N.D.; Gasperi, F.; Duy, N.V.; Biasioli, F. Electronic noses based on metal oxide nanowires: A review. Nanotechnol. Rev. 2022, 11, 897–925. [Google Scholar] [CrossRef]
- Schütze, A.; Baur, T.; Leidinger, M.; Reimringer, W.; Jung, R.; Conrad, T.; Sauerwald, T. Highly Sensitive and Selective VOC Sensor Systems Based on Semiconductor Gas Sensors: How to? Environment 2017, 4, 20. [Google Scholar] [CrossRef]
- Feng, S.; Farha, F.; Li, Q.; Wan, Y.; Xu, Y.; Zhang, T.; Ning, H. Review on Smart Gas Sensing Technology. Sensors 2019, 19, 3760. [Google Scholar] [CrossRef]
- Chen, H.; Huo, D.; Zhang, J. Gas Recognition in E-Nose System: A Review. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 169–184. [Google Scholar] [CrossRef]
- Ye, Z.; Liu, Y.; Li, Q. Recent Progress in Smart Electronic Nose Technologies Enabled with Machine Learning Methods. Sensors 2021, 21, 7620. [Google Scholar] [CrossRef]
- Marco, S.; Gutierrez-Galvez, A. Signal and Data Processing for Machine Olfaction and Chemical Sensing: A Review. IEEE Sens. J. 2012, 12, 3189–3214. [Google Scholar] [CrossRef]
- Bahmanpour, A.M.; Andrew, H.; Akshat, T. Critical Review and Exergy Analysis of Formaldehyde Production Processes. Rev. Chem. Eng. 2014, 30, 583–604. [Google Scholar] [CrossRef]
- Andrushkevich, T.V.; Popova, G.Y.; Danilevich, E.V.; Zolotarskii, I.A.; Nakrokhin, V.B.; Nikoro, T.A.; Stompel, S.I.; Parmon, V.N. A New Gas-Phase Method for Formic Acid Production: Tests on a Pilot Plant. Catal. Ind. 2014, 6, 17–24. [Google Scholar] [CrossRef]
- Bulushev, D.A.; Ross, J.R.H. Towards Sustainable Production of Formic Acid. Chem. Sus. Chem. 2018, 11, 821–836. [Google Scholar] [CrossRef]
- Puglisi, D.; Eriksson, J.; Andersson, M.; Huotari, J.; Bastuck, M.; Bur, C.; Lappalainen, J.; Schütze, A.; Lloyd Spetz, A. Exploring the Gas Sensing Performance of Catalytic Metal/Metal Oxide 4H-SiC Field Effect Transistors. Mater. Sci. Forum 2016, 858, 997–1000. [Google Scholar] [CrossRef]
- Puglisi, D.; Eriksson, J.; Bur, C.; Schuetze, A.; Lloyd Spetz, A.; Andersson, M. Catalytic Metal-Gate Field Effect Transistor Based on SiC for Indoor Air Quality Control. J. Sens. Sens. Syst. 2015, 4, 1–8. [Google Scholar] [CrossRef]
- Schafer, R.W. What Is a Savitzky-Golay Filter? IEEE Sig. Proc. 2011, 28, 111–117. [Google Scholar] [CrossRef]
- Pearce, T.C.; Gutierrez-Osuna, R.; Nagle, H.T.; Kermani, B.; Schiffman, S.S. Signal Conditioning and Preprocessing. In Handbook of Machine Olfaction; Pearce, T.C., Schiffman, S.S., Nagle, H.T., Gardner, J.W., Eds.; Wiley-VCH: Weinheim, Germany, 2003; pp. 105–132. [Google Scholar]
- Gutierrez-Osuna, R. Pattern Analysis for Machine Olfaction: A Review. IEEE Sens. J. 2002, 2, 189–202. [Google Scholar] [CrossRef]
- Yan, J.; Guo, X.; Duan, S.; Jia, P.; Wang, L.; Peng, C.; Zhang, S. Electronic Nose Feature Extraction Methods: A Review. Sensors 2015, 15, 27804–27831. [Google Scholar] [CrossRef]
- Bur, C. Selectivity Enhancement of Gas Sensitive Field Effect Transistors by Dynamic Operation. Ph.D. Dissertation, Linköping University, Linkping, Sweden, 2015. [Google Scholar]
- Klecka, W.R. Discriminant Analysis; Quantitative Applications in the Social Sciences Series; SAGE Publications: New York, NY, USA, 1980. [Google Scholar]
- Cristianini, N.; Ricci, E. Support Vector Machines. In Encyclopedia of Algorithms; Kao, M.Y., Ed.; Springer: Boston, MA, USA, 2008; pp. 415–420. [Google Scholar]
- Bur, C.; Andersson, M.; Lloyd Spetz, A.; Schütze, A. Detecting Volatile Organic Compounds in the ppb Range with Gas Sensitive Platinum Gate SiC-Field Effect Transistors. IEEE Sens. J. 2014, 14, 3221–3228. [Google Scholar] [CrossRef]
- Wold, S.; Sjostrom, M.; Eriksson, L. PLS-Regression: A Basic Tool of Chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. Model Assessment and Selection. In The Elements of Statistical Learning, 2nd ed.; Springer: New York, NY, USA, 2009; Volume 1, p. 241. [Google Scholar]
- Montgomery, D.C. (Ed.) Fitting Regression Models. In Design and Analysis of Experiments, 5th ed.; John Wiley & Sons Inc.: New York, NY, USA, 1997; pp. 392–422. [Google Scholar]
- Domènech-Gil, G.; Puglisi, D. Benefits of Virtual Sensors for Air Quality Monitoring in Humid Conditions. Sens. Actuators B Chem. 2021, 344, 130294. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domènech-Gil, G.; Puglisi, D. A Virtual Electronic Nose for the Efficient Classification and Quantification of Volatile Organic Compounds. Sensors 2022, 22, 7340. https://doi.org/10.3390/s22197340
Domènech-Gil G, Puglisi D. A Virtual Electronic Nose for the Efficient Classification and Quantification of Volatile Organic Compounds. Sensors. 2022; 22(19):7340. https://doi.org/10.3390/s22197340
Chicago/Turabian StyleDomènech-Gil, Guillem, and Donatella Puglisi. 2022. "A Virtual Electronic Nose for the Efficient Classification and Quantification of Volatile Organic Compounds" Sensors 22, no. 19: 7340. https://doi.org/10.3390/s22197340
APA StyleDomènech-Gil, G., & Puglisi, D. (2022). A Virtual Electronic Nose for the Efficient Classification and Quantification of Volatile Organic Compounds. Sensors, 22(19), 7340. https://doi.org/10.3390/s22197340