Road User Exposure from ITS-5.9 GHz Vehicular Connectivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Simulated Exposure Scenario
2.2. Electromagnetic Field Calculation
- In the first stage, the simulation was done without the human model and aimed to calculate the equivalent electric and magnetic surface currents on the Huygens’ Box, defined as and , where is the inward-pointing normal vector to the Huygens’ Box and and are the magnetic and electric fields inside the Huygens’ Box due to the two antennas on the car;
- In the second stage, the human model was placed inside the Huygens’ Box region and the equivalent surface currents calculated in the first stage were used as the excitation sources, i.e., they acted as sources generating the same fields as those originated by the two antennas.
2.3. Exposure Assessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IEEE Standard for Information Technology. Local and Metropolitan Area Networks—Specific Requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments; IEEE Standard 802.11p; IEEE Computer Society: Washington, DC, USA, 2010; pp. 1–51. [Google Scholar]
- 3GPP TR 36.885 V14.0.0; Technical Specification Group Radio Access Network; Study on LTE-Based V2X services; (Release 14); 3GPP Support Office: Sophia Antipolis Cedex, France, 2016.
- 3GPP TR 38.886 V16.3.0; Technical Specification Group Radio Access Network; V2X Services Based on NR; User Equipment (UE) Radio Transmission and Reception; (Release 16); 3GPP Support Office: Valbonne, France, 2021.
- 3GPP TS 36.101 Version 14.20.0; LTE—Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) Radio Transmission and Reception (Release 14), ETSI TS 136 101 V14.20.0; 3GPP Support Office: Sophia Antipolis Cedex, France, 2021.
- 3GPP TR 38.785 V0.5.0; Technical Specification Group Radio Access Network; NR Sidelink Enhancement; User Equipment (UE) Radio Transmission and Reception; (Release 17); 3GPP Support Office: Valbonne, France, 2021.
- Jadhav, A.; Sonpimple, A. Connected car market by technology (2G, 3G, and 4G/LTE), connectivity solutions (integrated, embedded, and tethered), service (driver assistance, safety, entertainment, well-being, vehicle management, and mobility management), and end market (OEM and aftermarket): Global opportunity analysis and industry forecast. Allied Mark. Res. 2018. Available online: https://www.premiummarketinsights.com/reports-amr/connected-car-market (accessed on 26 July 2022).
- Bazzi, A.; Cecchini, G.; Menarini, M.; Masini, B.M.; Zanella, A. Survey and perspectives of vehicular Wi-Fi versus sidelink cellular-V2X in the 5G era. Future Internet 2019, 11, 122. [Google Scholar] [CrossRef]
- IEEE/IEC International Standard for Determining the Peak Spatial Average Specific Absorption Rate (SAR) in the Human Body form Wireless Communications Devices, 30 MHz–6 GHz, Part 1: General Requirements for Using the Finite Different Time Domain (FDTD) Method for SAR Calculation. IEEE/IEC 62704–1, 2017. Available online: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8088404 (accessed on 26 July 2022).
- IEEE/IEC International Standard for Determining the Peak Spatial Average Specific Absorption Rate (SAR) in the Human Body form Wireless Communications Devices, 30 MHz–6 GHz, Part 2: Specific Requirements for Finite Different Time Domain (FDTD) Modelling of Exposure from Vehicle Mounted Antennas. IEEE/IEC 62704–2, 2017. Available online: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7964816 (accessed on 26 July 2022).
- Eze, E.C.; Zhang, S.J.; Liu, E.J.; Eze, J.C. Advances in vehicular ad-hoc networks (VANETs): Challenges and road-map for future development. Int. J. Autom. Comput. 2016, 13, 1–18. [Google Scholar] [CrossRef]
- Gyawali, S.; Xu, S.; Qian, Y.; Hu, R.Q. Challenges and solutions for cellular based V2X communications. IEEE Commun. Surv. Tutor. 2020, 23, 222–255. [Google Scholar] [CrossRef]
- Artner, G.; Kotterman, W.; Del Galdo, G.; Hein, M.A. Automotive antenna roof for cooperative connected driving. IEEE Access 2019, 7, 20083–20090. [Google Scholar] [CrossRef]
- Tognola, G.; Bonato, M.; Benini, M.; Aerts, S.; Gallucci, S.; Chiaramello, E.; Fiocchi, S.; Parazzini, M.; Masini, B.; Joseph, J.; et al. Exposure to RF Electromagnetic Fields in the Connected Vehicle: Survey of Existing and Forthcoming Scenarios. IEEE Access 2022, 10, 47764–47781. [Google Scholar] [CrossRef]
- Harris, L.R.; Zhadobov, M.; Chahat, N.; Sauleau, R. Electromagnetic dosimetry for adult and child models within a car: Multi-exposure scenarios. Int. J. Microw. Wirel. Technol. 2011, 3, 707–715. [Google Scholar] [CrossRef]
- Diao, Y.; Sun, W.N.; Chan, K.H.; Leung, S.W.; Siu, Y.M. SAR evaluation for multiple wireless communication devices inside a vehicle. In Proceedings of the 2013 International Symposium on Electromagnetic Theory, Hiroshima, Japan, 20–23 May 2013; pp. 626–629. [Google Scholar]
- Aminzadeh, R.; Abdolali, A.; Khaligh, H. A Numerical Study on the Interaction Between Different Position of Cellular Headsets and a Human Head. ACES J. 2014, 29, 91–98. [Google Scholar]
- Tognola, G.; Masini, B.; Gallucci, S.; Bonato, M.; Fiocchi, S.; Chiaramello, E.; Parazzini, M.; Ravazzani, P. Numerical Assessment of RF Human Exposure in Smart Mobility Communications. IEEE J. Electromagn. RF Microw. Med. Biol. 2021, 5, 100–107. [Google Scholar] [CrossRef]
- Ruddle, A.R. Preliminary estimates of electromagnetic field exposures due to advanced vehicle technologies. In Proceedings of the 2016 Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, 14–15 November 2016; pp. 1–5. [Google Scholar]
- Autotalks; Cost-efficient C-V2X Antenna Installation. 2020. Available online: https://auto-talks.com/wp-content/uploads/2021/07/Cost-efficient-C-V2X-Antenna-Installation-final.pdf (accessed on 26 July 2022).
- Neira, E.C.; Carlberg, U.; Carlsson, J.; Karlsson, K.; Ström, E.G. Evaluation of V2X antenna performance using a multipath simulation tool. In Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP 2014), Hague, The Netherlands, 6–11 April 2014; pp. 2534–2538. [Google Scholar]
- Thomas, A.; Swen, K.; Steffen, L.; Andreas, W. V2X—An Important Building Block in Cooperative Intelligent Transport Systems (C-ITS). TE Communication v2x. 2019. Available online: https://www.te.com/content/dam/te-com/documents/automotive/global/automotive-next-gen-mobility-v2x-09–2019-en.pdf (accessed on 26 July 2022).
- Gallo, M.; Bruni, S.; Pannozzo, M.; Zamberlan, D. Performance evaluation of C2C antennas on car body. In Proceedings of the 7th European Conference on Antennas and Propagation (EuCAP2013), Gothenburg, Sweden, 8–12 April 2013; pp. 3136–3139. [Google Scholar]
- Gallo, M.; Bruni, S.; Zamberlan, D. Design and measurement of automotive antennas for C2C applications. In Proceedings of the 6th European Conference on Antennas and Propagation (EUCAP2012), Prague, Czech Republic, 26–30 March 2012; pp. 1799–1803. [Google Scholar]
- Kwon, O.Y.; Song, R.; Kim, B.S. A fully integrated shark-fin antenna for MIMO-LTE, GPS, WLAN, and WAVE applications. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 600–603. [Google Scholar] [CrossRef]
- Ruddle, A. Influence of dielectric materials on in-vehicle electromagnetic fields. IET Semin. EM Propag. Build. Large Struct. 2008, 1–6. [Google Scholar]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, 2251–2269. [Google Scholar] [CrossRef] [PubMed]
- ZMT Zurich Med Tech AG, Zurich, Switzerland. Available online: www.zurichmedtech.com (accessed on 26 July 2022).
- Harrington, R.F. Time-Harmonic Electromagnetic Fields; McGraw-Hill College: New York, NY, USA, 1961. [Google Scholar]
- Wong, A.M.; Eleftheriades, G.V. Active Huygens’ box: Arbitrary electromagnetic wave generation with an electronically controlled metasurface. IEEE Trans. Antennas Propag. 2020, 69, 1455–1468. [Google Scholar] [CrossRef]
- Benkler, S.; Chavannes, N.; Kuster, N. Novel FDTD Huygens source enables highly complex simulation scenarios on ordinary PCs. In Proceedings of the 2009 IEEE Antennas and Propagation Society International Symposium, North Charleston, SC, USA, 1–5 June 2009; pp. 1–4. [Google Scholar]
- Sasaki, K.; Wake, K.; Watanabe, S. Measurement of the dielectric properties of the epidermis and dermis at frequencies from 0.5 GHz to 110 GHz. Phys. Med. Biol. 2014, 59, 4739. [Google Scholar] [CrossRef] [PubMed]
- Foster, K.R.; Ziskin, M.C.; Balzano, Q. Thermal response of human skin to microwave energy: A critical review. Health Phys. 2016, 111, 528–541. [Google Scholar] [CrossRef] [PubMed]
- Ziegelberger, G.; Croft, R.; Feychting, M.; Green, A.C.; Hirata, A.; d’Inzeo, G.; Jokela, K.; Loughran, S.; Marino, C.; Miller, S.; et al. ICNIRP guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz). Health Phys. 2020, 118, 483–524. [Google Scholar]
- IEEE Std C95.1–2019 (Revision of IEEE Std C95.1–2005/Incorporates IEEE Std C95.1–2019/Cor 1–2019); IEEE International Committee on Electromagnetic Safety. IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz. IEEE: New York, NY, USA, 2019; pp. 1–312.
- Bonato, M.; Chiaramello, E.; Fiocchi, S.; Tognola, G.; Ravazzani, P.; Parazzini, M. Influence of low frequency near-field sources position on the assessment of children exposure variability using Stochastic Dosimetry. IEEE J. Electromagn. RF Microw. Med. Biol. 2019, 4, 179–186. [Google Scholar] [CrossRef]
- Tognola, G.; Bonato, M.; Chiaramello, E.; Fiocchi, S.; Magne, I.; Souques, M.; Parazzini, M.; Ravazzani, P. Use of machine learning in the analysis of indoor ELF MF exposure in children. Int. J. Environ. Res. Public Health 2019, 16, 1230. [Google Scholar] [CrossRef] [Green Version]
Position Near the Car | wbSAR (mW/kg) in the Frontal Orientation (||) | wbSAR (mW/kg) in the Perpendicular Orientation (⊥) |
---|---|---|
B | 0.19 | 0.12 |
BS | 0.11 | 0.086 |
MS | 0.11 | 0.08 |
FS | 0.16 | 0.086 |
F | 0.17 | 0.062 |
P≥0.7 ·pSAR10g | |||
---|---|---|---|
Configuration | Eyes | Genitals Skin | Head Skin |
F|| | 32.9% | 6.3% | 0.2% |
F⊥ | 11.9% | 2.5% | 0.5% |
FS|| | 17.5% | 0.6% | 0.3% |
FS⊥ | 7.3% | 1.0% | 0.2% |
MS|| | 12.8% | 2.8% | 1.5% |
MS⊥ | 16.1% | 0.7% | 0.7% |
BS|| | 33.6% | 1.6% | 0.2% |
BS⊥ | 12.8% | 2.3% | 0.3% |
B|| | 32.5% | 1.5% | 0.2% |
B⊥ | 14.6% | 1.4% | 0.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benini, M.; Parazzini, M.; Bonato, M.; Gallucci, S.; Chiaramello, E.; Fiocchi, S.; Tognola, G. Road User Exposure from ITS-5.9 GHz Vehicular Connectivity. Sensors 2022, 22, 6986. https://doi.org/10.3390/s22186986
Benini M, Parazzini M, Bonato M, Gallucci S, Chiaramello E, Fiocchi S, Tognola G. Road User Exposure from ITS-5.9 GHz Vehicular Connectivity. Sensors. 2022; 22(18):6986. https://doi.org/10.3390/s22186986
Chicago/Turabian StyleBenini, Martina, Marta Parazzini, Marta Bonato, Silvia Gallucci, Emma Chiaramello, Serena Fiocchi, and Gabriella Tognola. 2022. "Road User Exposure from ITS-5.9 GHz Vehicular Connectivity" Sensors 22, no. 18: 6986. https://doi.org/10.3390/s22186986
APA StyleBenini, M., Parazzini, M., Bonato, M., Gallucci, S., Chiaramello, E., Fiocchi, S., & Tognola, G. (2022). Road User Exposure from ITS-5.9 GHz Vehicular Connectivity. Sensors, 22(18), 6986. https://doi.org/10.3390/s22186986