A Review of Capabilities and Scope for Hybrid Integration Offered by Silicon-Nitride-Based Photonic Integrated Circuits
Abstract
:1. Introduction
2. Low-Loss Silicon Nitride Materials
2.1. Thermal Cycling
2.2. Photonic Damascene Reflow Process
2.3. Multistep Annealing
2.4. Twist-and-Grow
2.5. Summary
3. Si-Rich Silicon Nitride for Nonlinear Photonics
3.1. Tunable Nonlinear Optical Properties
3.2. FWM-Based Frequency Conversion in Multimode Si-Rich Silicon Nitride Waveguides
3.3. Nonlinear Optics in Ultra-Silicon-Rich Nitride Platform
4. High-Speed Modulators on the Silicon Nitride Platform
4.1. Electro-Optic Polymer-Based Phase Change Modulators
4.2. Lithium Niobate Modulators
4.3. Barium Titanate Oxide (BTO) Modulators
4.4. Modulators in 2D Materials
4.4.1. Graphene
4.4.2. TMDs
4.5. TCO-Based ENZ Modulators
4.6. Summary
5. Nonvolatile Photonics and Trimming
5.1. Phase Change Materials
5.2. Permanent Tuning of the Refractive Index
6. III-V/SiN Integration: Towards Efficient Monolithic Lasers on Silicon Substrate
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liang, D.; Bowers, J.E. Recent Progress in Heterogeneous III-V-on-Silicon Photonic Integration. Light. Adv. Manuf. 2021, 2, 59–83. [Google Scholar] [CrossRef]
- Rahim, A.; Hermans, A.; Wohlfeil, B.; Petousi, D.; Kuyken, B.; Van Thourhout, D.; Baets, R. Taking silicon photonics modulators to a higher performance level: State-of-the-art and a review of new technologies. Adv. Photonics 2021, 3, 024003. [Google Scholar] [CrossRef]
- Doerr, C.R. Silicon photonic integration in telecommunications. Front. Phys. 2015, 3, 37. [Google Scholar] [CrossRef]
- Lipka, T.; Moldenhauer, L.; Müller, J.; Trieu, H.K. Photonic integrated circuit components based on amorphous silicon-on-insulator technology. Photonics Res. 2016, 4, 126–134. [Google Scholar] [CrossRef]
- Worhoff, K.; Klein, E.; Hussein, G.; Driessen, A. Silicon oxynitride based photonics. In Proceedings of the 2008 10th Anniversary International Conference on Transparent Optical Networks, Athens, Greece, 22–26 June 2008; Volume 3, pp. 266–269. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.J.; Fanto, M.; Choi, H.; Thomas, P.; Steidle, J.; Mouradian, S.; Kong, W.; Zhu, D.; Moon, H.; Berggren, K.; et al. Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum. Opt. Express 2018, 26, 11147–11160. [Google Scholar] [CrossRef]
- West, G.N. Seeing blue: Pushing integrated photonics into the ultraviolet with ALD aluminum oxide. In Integrated Optics: Devices, Materials, and Technologies XXIV; García-Blanco, S.M., Cheben, P., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2020; Volume 11283, pp. 10–22. [Google Scholar] [CrossRef]
- Blumenthal, D.J.; Heideman, R.; Geuzebroek, D.; Leinse, A.; Roeloffzen, C. Silicon Nitride in Silicon Photonics. Proc. IEEE 2018, 106, 2209–2231. [Google Scholar] [CrossRef] [Green Version]
- Blumenthal, D.J. Photonic integration for UV to IR applications. APL Photonics 2020, 5, 020903. [Google Scholar] [CrossRef] [Green Version]
- Domínguez Bucio, T.; Khokhar, A.Z.; Lacava, C.; Stankovic, S.; Mashanovich, G.Z.; Petropoulos, P.; Gardes, F.Y. Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications. J. Phys. D: Appl. Phys. 2017, 50, 025106. [Google Scholar] [CrossRef]
- Ng, D.K.T.; Wang, Q.; Wang, T.; Ng, S.K.; Toh, Y.T.; Lim, K.P.; Yang, Y.; Tan, D.T.H. Exploring High Refractive Index Silicon-Rich Nitride Films by Low-Temperature Inductively Coupled Plasma Chemical Vapor Deposition and Applications for Integrated Waveguides. ACS Appl. Mater. Interfaces 2015, 7, 21884–21889. [Google Scholar] [CrossRef]
- Tan, D.T.H.; Ooi, K.J.A.; Ng, D.K.T. Nonlinear optics on silicon-rich nitride–a high nonlinear figure of merit CMOS platform. Photonics Res. 2018, 6, B50–B66. [Google Scholar] [CrossRef]
- Fernández Gavela, A.; Grajales García, D.; Ramirez, J.C.; Lechuga, L.M. Last advances in silicon-based optical biosensors. Sensors 2016, 16, 285. [Google Scholar] [CrossRef] [Green Version]
- Antonacci, G.; Goyvaerts, J.; Zhao, H.; Baumgartner, B.; Lendl, B.; Baets, R. Ultra-sensitive refractive index gas sensor with functionalized silicon nitride photonic circuits. APL Photonics 2020, 5, 081301. [Google Scholar] [CrossRef]
- Bauters, J.F.; Heck, M.J.R.; Demis, J.; Dai, D.; Tien, M.; Barton, J.S.; Leinse, A.; Heideman, R.G.; Blumenthal, D.J.; Bowers, J.E. Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Opt. Express 2011, 19, 3163–3174. [Google Scholar] [CrossRef] [PubMed]
- Bauters, J.F.; Heck, M.J.R.; John, D.D.; Barton, J.S.; Bruinink, C.M.; Leinse, A.; Heideman, R.G.; Blumenthal, D.J.; Bowers, J.E. Planar waveguides with less than 0.1dB/m propagation loss fabricated with wafer bonding. Opt. Express 2011, 19, 24090–24101. [Google Scholar] [CrossRef]
- Bauters, J.F.; Davenport, M.L.; Heck, M.J.R.; Doylend, J.K.; Chen, A.; Fang, A.W.; Bowers, J.E. Silicon on ultra-low-loss waveguide photonic integration platform. Opt. Express 2013, 21, 544–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Song, J.; Luo, X.; Liow, T.Y.; Lo, G.Q. CMOS compatible monolithic multi-layer Si3N4-on-SOI platform for low-loss high performance silicon photonics dense integration. Opt. Express 2014, 22, 21859. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, C.; Tu, X.; Luo, X.; Yu, M.; Lo, P.G.Q. High efficiency silicon nitride grating coupler. Appl. Phys. A: Mater. Sci. Process. 2014, 115, 79–82. [Google Scholar] [CrossRef]
- Sacher, W.D.; Huang, Y.; Lo, G.; Poon, J.K.S. Multilayer Silicon Nitride-on-Silicon Integrated Photonic Platforms and Devices. J. Light. Technol. 2015, 33, 901–910. [Google Scholar] [CrossRef]
- Liu, J.; Huang, G.; Wang, R.N.; He, J.; Raja, A.S.; Liu, T.; Engelsen, N.J.; Kippenberg, T.J. High-yield wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun. 2020, 12, 2236. [Google Scholar] [CrossRef]
- Ji, X.; Roberts, S.; Corato-Zanarella, M.; Lipson, M. Methods to achieve ultra-high quality factor silicon nitride resonators. APL Photonics 2021, 6, 071101. [Google Scholar] [CrossRef]
- Temple-Boyer, P.; Rossi, C.; Saint-Etienne, E.; Scheid, E. Residual stress in low pressure chemical vapor deposition SiNx films deposited from silane and ammonia. J. Vac. Sci. Technol. A: Vac. Surfaces Film. 1998, 16, 2003–2007. [Google Scholar] [CrossRef] [Green Version]
- Luke, K.; Dutt, A.; Poitras, C.B.; Lipson, M. Overcoming Si3N4 film stress limitations for high quality factor ring resonators. Opt. Express 2013, 21, 22829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, X.; Barbosa, F.A.S.; Roberts, S.P.; Dutt, A.; Cardenas, J.; Okawachi, Y.; Bryant, A.; Gaeta, A.L.; Lipson, M. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica 2017, 4, 619. [Google Scholar] [CrossRef] [Green Version]
- Epping, J.P.; Hoekman, M.; Mateman, R.; Leinse, A.; Heideman, R.G.; van Rees, A.; van der Slot, P.J.; Lee, C.J.; Boller, K.J. High confinement, high yield Si3N4 waveguides for nonlinear optical applications. Opt. Express 2015, 23, 642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfeiffer, M.H.P.; Kordts, A.; Brasch, V.; Zervas, M.; Geiselmann, M.; Jost, J.D.; Kippenberg, T.J. Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics. Optica 2016, 3, 20–25. [Google Scholar] [CrossRef]
- Pfeiffer, M.H.P.; Herkommer, C.; Liu, J.; Morais, T.; Zervas, M.; Geiselmann, M.; Kippenberg, T.J. Photonic damascene process for low-loss, high-confinement silicon nitride waveguides. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–11. [Google Scholar] [CrossRef]
- Pfeiffer, M.H.P.; Liu, J.; Raja, A.S.; Morais, T.; Ghadiani, B.; Kippenberg, T.J. Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: Fabrication and loss origins. Optica 2018, 5, 884. [Google Scholar] [CrossRef]
- Liu, J.; Raja, A.S.; Karpov, M.; Ghadiani, B.; Pfeiffer, M.H.P.; Du, B.; Engelsen, N.J.; Guo, H.; Zervas, M.; Kippenberg, T.J. Ultralow-power chip-based soliton microcombs for photonic integration. Optica 2018, 5, 1347–1353. [Google Scholar] [CrossRef]
- Ye, Z.; Twayana, K.; Andrekson, P.A.; Torres-Company, V. High-Q Si3N4 microresonators based on a subtractive processing for Kerr nonlinear optics. Opt. Express 2019, 27, 35719. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.; Fülöp, A.; Helgason, Ó.B.; Andrekson, P.A.; Torres-Company, V. Low-loss high-Q silicon-rich silicon nitride microresonators for Kerr nonlinear optics. Opt. Lett. 2019, 44, 3326. [Google Scholar] [CrossRef] [Green Version]
- El Dirani, H.; Youssef, L.; Petit-Etienne, C.; Kerdiles, S.; Grosse, P.; Monat, C.; Pargon, E.; Sciancalepore, C. Ultralow-loss tightly confining Si3N4 waveguides and high-Q microresonators. Opt. Express 2019, 27, 30726. [Google Scholar] [CrossRef] [PubMed]
- El Dirani, H.; Casale, M.; Kerdiles, S.; Socquet-Clerc, C.; Letartre, X.; Monat, C.; Sciancalepore, C. Crack-Free Silicon-Nitride-on-Insulator Nonlinear Circuits for Continuum Generation in the C-Band. IEEE Photonics Technol. Lett. 2018, 30, 355–358. [Google Scholar] [CrossRef]
- El Dirani, H.; Kamel, A.; Casale, M.; Kerdiles, S.; Monat, C.; Letartre, X.; Pu, M.; Oxenløwe, L.K.; Yvind, K.; Sciancalepore, C. Annealing-free Si3N4 frequency combs for monolithic integration with Si photonics. Appl. Phys. Lett. 2018, 113, 081102. [Google Scholar] [CrossRef] [Green Version]
- Tan, D.T.H.; Ng, D.K.T.; Choi, J.W.; Sahin, E.; Sohn, B.U.; Chen, G.F.R.; Xing, P.; Gao, H.; Cao, Y. Nonlinear optics in ultra-silicon-rich nitride devices: Recent developments and future outlook. Adv. Phys. X 2021, 6, 1905544. [Google Scholar] [CrossRef]
- Wilmart, Q.; El Dirani, H.; Tyler, N.; Fowler, D.; Malhouitre, S.; Garcia, S.; Casale, M.; Kerdiles, S.; Hassan, K.; Monat, C.; et al. A Versatile Silicon-Silicon Nitride Photonics Platform for Enhanced Functionalities and Applications. Appl. Sci. 2019, 9, 255. [Google Scholar] [CrossRef] [Green Version]
- Lafforgue, C.; Guerber, S.; Ramirez, J.M.; Marcaud, G.; Alonso-Ramos, C.; Roux, X.L.; Marris-Morini, D.; Cassan, E.; Baudot, C.; Boeuf, F.; et al. Broadband supercontinuum generation in nitrogen-rich silicon nitride waveguides using a 300 mm industrial platform. Photon. Res. 2020, 8, 352–358. [Google Scholar] [CrossRef]
- Lacava, C.; Stankovic, S.; Khokhar, A.Z.; Domínguez Bucio, T.; Gardes, F.Y.; Reed, G.T.; Richardson, D.J.; Petropoulos, P. Si-rich Silicon Nitride for Nonlinear Signal Processing Applications. Sci. Rep. 2017, 7, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacava, C.; Bucio, T.D.; Khokhar, A.Z.; Horak, P.; Jung, Y.; Gardes, F.Y.; Richardson, D.J.; Petropoulos, P.; Parmigiani, F. Intermodal frequency generation in silicon-rich silicon nitride waveguides. Photon. Res. 2019, 7, 615–621. [Google Scholar] [CrossRef]
- Domínguez Bucio, T.; Lacava, C.; Clementi, M.; Faneca, J.; Skandalos, I.; Baldycheva, A.; Galli, M.; Debnath, K.; Petropoulos, P.; Gardes, F. Silicon nitride photonics for the near-infrared. IEEE J. Sel. Top. Quantum Electron. 2019, 26, 1–13. [Google Scholar] [CrossRef]
- Krückel, C.J.; Fülöp, A.; Ye, Z.; Andrekson, P.A. Optical bandgap engineering in nonlinear silicon nitride waveguides. Opt. Express 2017, 25, 15370–15380. [Google Scholar] [CrossRef] [Green Version]
- Ooi, K.; Ng, D.; Wang, T.; Chee, A.; Ng, S.; Wang, Q.; Ang, L.; Agarwal, A.; Kimerling, L.; Tan, D. Pushing the limits of CMOS optical parametric amplifiers with USRN: Si7N3 above the two-photon absorption edge. Nat. Commun. 2017, 8, 13878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.; Sohn, B.U.; Chen, G.; Ng, D.; Tan, D. Broadband incoherent four-wave mixing and 27 dB idler conversion efficiency using ultra-silicon rich nitride devices. Appl. Phys. Lett. 2018, 112, 181101. [Google Scholar] [CrossRef]
- Lim, K.P.; Krishnamurthy, V.; Ying, J.F.; Pu, J.; Wang, Q. Ultrahigh index and low-loss silicon rich nitride thin film for NIR HAMR optics. IEEE Trans. Magn. 2017, 53, 1–7. [Google Scholar] [CrossRef]
- Choi, J.W.; Chen, G.F.; Ng, D.; Ooi, K.J.; Tan, D.T. Wideband nonlinear spectral broadening in ultra-short ultra-silicon rich nitride waveguides. Sci. Rep. 2016, 6, 27120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cong, H.; Feng, Q.; Zhang, J.; Wang, J.; Wei, W.; Wang, T.; Zhang, J. Kerr nonlinearity induced four-wave mixing of CMOS-compatible PECVD deposited ultra-Si-rich-nitride. J. Appl. Phys. 2020, 128, 013102. [Google Scholar] [CrossRef]
- Choi, J.W.; Sohn, B.U.; Chen, G.F.; Ng, D.K.; Tan, D.T. Soliton-effect optical pulse compression in CMOS-compatible ultra-silicon-rich nitride waveguides. APL Photonics 2019, 4, 110804. [Google Scholar] [CrossRef]
- Agrawal, G.P. Nonlinear fiber optics. In Nonlinear Science at the Dawn of the 21st Century; Springer: Berlin/Heidelberg, Germany, 2000; pp. 195–211. [Google Scholar] [CrossRef]
- Miller, R.C. Optical second harmonic generation in piezoelectric crystals. Appl. Phys. Lett. 1964, 5, 17–19. [Google Scholar] [CrossRef]
- Lacava, C.; Minzioni, P.; Baldini, E.; Tartara, L.; Fedeli, J.; Cristiani, I. Nonlinear characterization of hydrogenated amorphous silicon waveguides and analysis of carrier dynamics. Appl. Phys. Lett. 2013, 103, 141103. [Google Scholar] [CrossRef] [Green Version]
- Guasoni, M.; Parmigiani, F.; Horak, P.; Richardson, D.J. Novel fiber design for wideband conversion and amplification in multimode fibers. In Proceedings of the 2017 European Conference on Optical Communication (ECOC), Gothenburg, Sweden, 17–21 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–3. [Google Scholar] [CrossRef] [Green Version]
- Christensen, J.B.; Koefoed, J.G.; Bell, B.A.; McKinstrie, C.J.; Rottwitt, K. Shape-preserving and unidirectional frequency conversion by four-wave mixing. Opt. Express 2018, 26, 17145–17157. [Google Scholar] [CrossRef]
- Bell, B.A.; Xiong, C.; Marpaung, D.; McKinstrie, C.J.; Eggleton, B.J. Uni-directional wavelength conversion in silicon using four-wave mixing driven by cross-polarized pumps. Opt. Lett. 2017, 42, 1668–1671. [Google Scholar] [CrossRef]
- Sohn, B.U.; Choi, J.W.; Ng, D.K.; Tan, D.T. Optical nonlinearities in ultra-silicon-rich nitride characterized using z-scan measurements. Sci. Rep. 2019, 9, 10364. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, K.; Saperstein, R.E.; Alic, N.; Fainman, Y. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt. Express 2008, 16, 12987–12994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, D.; Ikeda, K.; Sun, P.; Fainman, Y. Group velocity dispersion and self phase modulation in silicon nitride waveguides. Appl. Phys. Lett. 2010, 96, 061101. [Google Scholar] [CrossRef] [Green Version]
- Sahin, E.; Ng, D.K.; Tan, D.T. Optical parametric gain in CMOS-compatible sub-100 μm photonic crystal waveguides. APL Photonics 2020, 5, 066108. [Google Scholar] [CrossRef]
- Sahin, E.; Blanco-Redondo, A.; Xing, P.; Ng, D.K.; Png, C.E.; Tan, D.T.; Eggleton, B.J. Bragg soliton compression and fission on CMOS-compatible ultra-silicon-rich nitride. Laser Photonics Rev. 2019, 13, 1900114. [Google Scholar] [CrossRef]
- Cao, Y.; Sahin, E.; Choi, J.W.; Xing, P.; Chen, G.F.; Ng, D.; Eggleton, B.J.; Tan, D.T. Thermo-optically tunable spectral broadening in a nonlinear ultra-silicon-rich nitride Bragg grating. Photonics Res. 2021, 9, 596–604. [Google Scholar] [CrossRef]
- Wang, T.; Ng, D.K.; Ng, S.K.; Toh, Y.T.; Chee, A.K.; Chen, G.F.; Wang, Q.; Tan, D.T. Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides. Laser Photonics Rev. 2015, 9, 498–506. [Google Scholar] [CrossRef]
- Ng, D.K.; Xing, P.; Chen, G.F.; Gao, H.; Cao, Y.; Tan, D.T. Improved CMOS-compatible ultra-silicon-rich nitride for non-linear optics. In Optical Components and Materials XVIII; International Society for Optics and Photonics: Bellingham, WA, USA, 2021; Volume 11682, p. 116820L. [Google Scholar]
- Ng, D.K.; Gao, H.; Xing, P.; Chen, G.F.; Chia, X.X.; Cao, Y.; Ong, K.Y.; Tan, D.T. Enhanced photonics devices based on low temperature plasma-deposited dichlorosilane-based ultra-silicon-rich nitride (Si8N). Sci. Rep. 2022, 12, 5267. [Google Scholar] [CrossRef]
- Soref, R. The Past, Present, and Future of Silicon Photonics. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 1678–1687. [Google Scholar] [CrossRef]
- Tien, P.; Martin, R.; Wolfe, R.; Le Craw, R.; Blank, S. Switching and modulation of light in magneto-optic waveguides of garnet films. Appl. Phys. Lett. 1972, 21, 394–396. [Google Scholar] [CrossRef]
- Densmore, A.; Janz, S.; Ma, R.; Schmid, J.H.; Xu, D.X.; Delâge, A.; Lapointe, J.; Vachon, M.; Cheben, P. Compact and low power thermo-optic switch using folded silicon waveguides. Opt. Express 2009, 17, 10457–10465. [Google Scholar] [CrossRef] [PubMed]
- Kittlaus, E.A.; Jones, W.M.; Rakich, P.T.; Otterstrom, N.T.; Muller, R.E.; Rais-Zadeh, M. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics. Nat. Photonics 2021, 15, 43–52. [Google Scholar] [CrossRef]
- Xu, Q.; Schmidt, B.; Pradhan, S.; Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 2005, 435, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Jones, R.; Liao, L.; Samara-Rubio, D.; Rubin, D.; Cohen, O.; Nicolaescu, R.; Paniccia, M. A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature 2004, 427, 615–618. [Google Scholar] [CrossRef] [PubMed]
- Thomson, D.J.; Gardes, F.Y.; Hu, Y.; Mashanovich, G.; Fournier, M.; Grosse, P.; Fedeli, J.M.; Reed, G.T. High contrast 40Gbit/s optical modulation in silicon. Opt. Express 2011, 19, 11507–11516. [Google Scholar] [CrossRef] [Green Version]
- Reed, G.T.; Thomson, D.J.; Gardes, F.Y.; Hu, Y.; Fedeli, J.M.; Mashanovich, G.Z. High-speed carrier-depletion silicon Mach–Zehnder optical modulators with lateral PN junctions. Front. Phys. 2014, 2, 77. [Google Scholar] [CrossRef] [Green Version]
- Gardes, F.; Reed, G.; Emerson, N.; Png, C. A sub-micron depletion-type photonic modulator in silicon on insulator. Opt. Express 2005, 13, 8845–8854. [Google Scholar] [CrossRef]
- Khurgin, J.B.; Stievater, T.H.; Pruessner, M.W.; Rabinovich, W.S. On the origin of the second-order nonlinearity in strained Si–SiN structures. JOSA B 2015, 32, 2494–2499. [Google Scholar] [CrossRef] [Green Version]
- Alloatti, L.; Palmer, R.; Diebold, S.; Pahl, K.P.; Chen, B.; Dinu, R.; Fournier, M.; Fedeli, J.M.; Zwick, T.; Freude, W.; et al. 100 GHz silicon–organic hybrid modulator. Light. Sci. Appl. 2014, 3, e173. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Hosseini, A.; yun Lin, C.; Luo, J.; Jen, A.K.Y.; Chen, R.T. Demonstration of Effective In-Device r33 over 1000 pm/V in Electro-Optic Polymer Refilled Silicon Slot Photonic Crystal Waveguide Modulator; Optica Publishing Group CLEO: San Jose, CA, USA, 2013; p. CTu2F.6. [Google Scholar] [CrossRef]
- Chen, L.; Xu, Q.; Wood, M.G.; Reano, R.M. Hybrid silicon and lithium niobate electro-optical ring modulator. Optica 2014, 1, 112–118. [Google Scholar] [CrossRef]
- He, M.; Xu, M.; Ren, Y.; Jian, J.; Ruan, Z.; Xu, Y.; Gao, S.; Sun, S.; Wen, X.; Zhou, L.; et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s-1 and beyond. Nat. Photonics 2019, 13, 359–364. [Google Scholar] [CrossRef]
- Eltes, F.; Ortmann, J.E.; Castera, P.; Urbonas, D.; Caimi, D.; Czornomaz, L.; Sanchis, P.; Fompeyrine, J.; Abel, S. Silicon-Integrated High-Speed Modulators Based on Barium Titanate with Record-Large Pockels Coefficients. In Proceedings of the 2019 Conference on Lasers and Electro-Optics Europe European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 23–27 June 2019; p. 1. [Google Scholar] [CrossRef]
- Li, M.; Tang, H.X. Strong pockels materials. Nat. Mater. 2019, 18, 9–11. [Google Scholar] [CrossRef] [PubMed]
- Alexander, K.; George, J.P.; Verbist, J.; Neyts, K.; Kuyken, B.; Van Thourhout, D.; Beeckman, J. Nanophotonic Pockels modulators on a silicon nitride platform. Nat. Commun. 2018, 9, 3444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, B.; Li, E.; Bo, Y.; Wang, A. High-Speed Plasmonic-Silicon Modulator Driven by Epsilon-near-zero Conductive Oxide. J. Light. Technol. 2020, 8724, 3338–3345. [Google Scholar] [CrossRef]
- Baudzus, L.; Krummrich, P.M. Low Loss Electro-Optic Polymer Based Fast Adaptive Phase Shifters Realized in Silicon Nitride and Oxynitride Waveguide Technology. Photonics 2016, 3, 49. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.N.R.; Shi, S.; Zablocki, M.; Yao, P.; Prather, D.W. Tunable Hybrid Silicon Nitride and Thin-Film Lithium Niobate Electro-Optic microresonator. Opt. Lett. 2019, 44, 618–621. [Google Scholar] [CrossRef] [Green Version]
- Ortmann, J.E.; Eltes, F.; Caimi, D.; Meier, N.; Demkov, A.A.; Czornomaz, L.; Fompeyrine, J.; Abel, S. Ultra-Low-Power Tuning in Hybrid Barium Titanate–Silicon Nitride Electro-optic Devices on Silicon. ACS Photonics 2019, 6, 2677–2684. [Google Scholar] [CrossRef] [Green Version]
- Faneca, J.; Hogan, B.T.; Diez, I.R.; Gardes, F.Y.; Baldycheva, A. Tuning silicon-rich nitride microring resonances with graphene capacitors for high-performance computing applications. Opt. Express 2019, 27, 35129–35140. [Google Scholar] [CrossRef]
- He, J.; Paradisanos, I.; Liu, T.; Cadore, A.R.; Liu, J.; Churaev, M.; Wang, R.N.; Raja, A.S.; Javerzac-Galy, C.; Roelli, P.; et al. Low-Loss Integrated Nanophotonic Circuits with Layered Semiconductor Materials. Nano Lett. 2021, 21, 2709–2718. [Google Scholar] [CrossRef]
- Domnguez Bucio, T.; Tarazona, A.; Khokhar, A.Z.; Mashanovich, G.Z.; Gardes, F.Y. Low temperature silicon nitride waveguides for multilayer platforms. In Silicon Photonics and Photonic Integrated Circuits V; Vivien, L., Pavesi, L., Pelli, S., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2016; Volume 9891, pp. 335–341. [Google Scholar] [CrossRef] [Green Version]
- Qiu, F.; Yokoyama, S. Efficiently poled electro-optic polymer modulators. Opt. Express 2016, 24, 19020–19025. [Google Scholar] [CrossRef]
- Enami, Y.; Nakamura, H.; Luo, J.; Jen, A.Y. Analysis of efficiently poled electro-optic polymer/TiO2 vertical slot waveguide modulators. Opt. Commun. 2016, 362, 77–80. [Google Scholar] [CrossRef] [Green Version]
- Song, R.; Yick, A.; Steier, W.H. Conductivity-dependency-free in-plane poling for Mach–Zehnder modulator with highly conductive electro-optic polymer. Appl. Phys. Lett. 2007, 90, 191103. [Google Scholar] [CrossRef]
- Himmelhuber, R.; Herrera, O.D.; Voorakaranam, R.; Li, L.; Jones, A.M.; Norwood, R.A.; Luo, J.; Jen, A.K.Y.; Peyghambarian, N. A Silicon-Polymer Hybrid Modulator—Design, Simulation and Proof of Principle. J. Light. Technol. 2013, 31, 4067–4072. [Google Scholar] [CrossRef]
- Qiu, F.; Spring, A.M.; Maeda, D.; Ozawa, M.a.; Odoi, K.; Otomo, A.; Aoki, I.; Yokoyama, S. A hybrid electro-optic polymer and TiO2 double-slot waveguide modulator. Sci. Rep. 2015, 5, 8561. [Google Scholar] [CrossRef] [Green Version]
- Witzens, J.; Baehr-Jones, T.; Hochberg, M. Design of transmission line driven slot waveguide Mach–Zehnder interferometers and application to analog optical links. Opt. Express 2010, 18, 16902–16928. [Google Scholar] [CrossRef]
- Rutirawut, T.; Talataisong, W.; Gardes, F. Designs of Silicon Nitride Slot Waveguide Modulators with Electro-Optic Polymer and the Effect of Induced Charges in Si-Substrate on Their Performance. IEEE Photonics J. 2021, 13, 1–15. [Google Scholar] [CrossRef]
- Ishino, M.; Yokoyama, S. Hybrid thin silicon nitride and electro-optic polymer waveguide modulators. In Proceedings of the 2015 20th Microoptics Conference (MOC), Fukuoka, Japan, 25–28 October 2015; pp. 1–2. [Google Scholar] [CrossRef]
- Block, B.A.; Younkin, T.R.; Davids, P.S.; Reshotko, M.R.; Chang, P.; Polishak, B.M.; Huang, S.; Luo, J.; Jen, A.K. Electro-optic polymer cladding ring resonator modulators. Opt. Express 2008, 16, 18326–18333. [Google Scholar] [CrossRef]
- Olsson, S.L.; Eliasson, H.; Astra, E.; Karlsson, M.; Andrekson, P.A. Long-haul optical transmission link using low-noise phase-sensitive amplifiers. Nat. Commun. 2018, 9, 2513. [Google Scholar] [CrossRef]
- Weis, R.; Gaylord, T. Lithium niobate: Summary of physical properties and crystal structure. Appl. Phys. A 1985, 37, 191–203. [Google Scholar] [CrossRef]
- Moretti, L.; Iodice, M.; Della Corte, F.G.; Rendina, I. Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions. J. Appl. Phys. 2005, 98, 036101. [Google Scholar] [CrossRef]
- Parameswaran, K.R.; Route, R.K.; Kurz, J.R.; Roussev, R.V.; Fejer, M.M.; Fujimura, M. Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate. Opt. Lett. 2002, 27, 179–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wooten, E.L.; Kissa, K.M.; Yi-Yan, A.; Murphy, E.J.; Lafaw, D.A.; Hallemeier, P.F.; Maack, D.; Attanasio, D.V.; Fritz, D.J.; McBrien, G.J.; et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 69–82. [Google Scholar] [CrossRef]
- Levy, M.; Osgood Jr, R.; Liu, R.; Cross, L.; Cargill Iii, G.; Kumar, A.; Bakhru, H. Fabrication of single-crystal lithium niobate films by crystal ion slicing. Appl. Phys. Lett. 1998, 73, 2293–2295. [Google Scholar] [CrossRef]
- Zhu, D.; Shao, L.; Yu, M.; Cheng, R.; Desiatov, B.; Xin, C.; Hu, Y.; Holzgrafe, J.; Ghosh, S.; Shams-Ansari, A.; et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics 2021, 13, 242–352. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, M.; Chen, X.; Bertrand, M.; Shams-Ansari, A.; Chandrasekhar, S.; Winzer, P.; Lončar, M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 2018, 562, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.N.R.; Shi, S.; Mercante, A.J.; Prather, D.W. High-performance racetrack resonator in silicon nitride-thin film lithium niobate hybrid platform. Opt. Express 2019, 27, 30741–30751. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Liu, Y.; Li, Z.; Fan, Z.; Han, W. High-performance and compact integrated photonics platform based on silicon rich nitride–lithium niobate on insulator. APL Photonics 2021, 6, 116102. [Google Scholar] [CrossRef]
- Jin, S.; Xu, L.; Zhang, H.; Li, Y. LiNbO3 Thin-Film Modulators Using Silicon Nitride Surface Ridge Waveguides. IEEE Photonics Technol. Lett. 2015, 28, 736–739. [Google Scholar] [CrossRef]
- Chang, L.; Pfeiffer, M.H.; Volet, N.; Zervas, M.; Peters, J.D.; Manganelli, C.L.; Stanton, E.J.; Li, Y.; Kippenberg, T.J.; Bowers, J.E. Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon. Opt. Lett. 2017, 42, 803–806. [Google Scholar] [CrossRef]
- Margalit, N.; Xiang, C.; Bowers, S.M.; Bjorlin, A.; Blum, R.; Bowers, J.E. Perspective on the future of silicon photonics and electronics. Appl. Phys. Lett. 2021, 118, 220501. [Google Scholar] [CrossRef]
- Zhang, J.; Muliuk, G.; Juvert, J.; Kumari, S.; Goyvaerts, J.; Haq, B.; Op de Beeck, C.; Kuyken, B.; Morthier, G.; Van Thourhout, D.; et al. III-V-on-Si photonic integrated circuits realized using micro-transfer-printing. APL Photonics 2019, 4, 110803. [Google Scholar] [CrossRef] [Green Version]
- Vanackere, T.; Billet, M.; de Beeck, C.O.; Poelman, S.; Roelkens, G.; Clemmen, S.; Kuyken, B. Micro-Transfer Printing of Lithium Niobate on Silicon Nitride. In Proceedings of the 2020 European Conference on Optical Communications (ECOC), Brussels, Belgium, 6–10 December 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Ilie, S.T.; Ginel-Moreno, P.; Sagar, J.; Domínguez Bucio, T.; Ortega-Monux, A.; Lekkas, K.; Rutirawut, T.; Mastronardi, L.; Skandalos, I.; Grabska, K.M.; et al. Silicon nitride CMOS platform for integrated optical phased arrays applications. In Proceedings of the 2021 IEEE 17th International Conference on Group IV Photonics (GFP), Malaga, Spain, 25–27 August 2021; pp. 1–2. [Google Scholar] [CrossRef]
- Boes, A.; Corcoran, B.; Chang, L.; Bowers, J.; Mitchell, A. Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits. Laser Photonics Rev. 2018, 12, 1700256. [Google Scholar] [CrossRef]
- Shastri, B.J.; Tait, A.N.; Ferreira de Lima, T.; Pernice, W.H.; Bhaskaran, H.; Wright, C.D.; Prucnal, P.R. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 2021, 15, 102–114. [Google Scholar] [CrossRef]
- Marder, S.R.; Kippelen, B.; Jen, A.K.Y.; Peyghambarian, N. Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications. Nature 1997, 388, 845–851. [Google Scholar] [CrossRef]
- Abel, S.; Stöferle, T.; Marchiori, C.; Rossel, C.; Rossell, M.D.; Erni, R.; Caimi, D.; Sousa, M.; Chelnokov, A.; Offrein, B.J.; et al. A strong electro-optically active lead-free ferroelectric integrated on silicon. Nat. Commun. 2013, 4, 1671. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Puckett, M.W.; Lin, H.H.; Isichenko, A.; Vallini, F.; Fainman, Y. Effect of dielectric claddings on the electro-optic behavior of silicon waveguides. Opt. Lett. 2016, 41, 1185–1188. [Google Scholar] [CrossRef]
- Stark, P.; Horst, F.; Dangel, R.; Weiss, J.; Offrein, B.J. Opportunities for integrated photonic neural networks. Nanophotonics 2020, 9, 4221–4232. [Google Scholar] [CrossRef]
- Mourgias-Alexandris, G.; Totović, A.; Tsakyridis, A.; Passalis, N.; Vyrsokinos, K.; Tefas, A.; Pleros, N. Neuromorphic photonics with coherent linear neurons using dual-IQ modulation cells. J. Light. Technol. 2019, 38, 811–819. [Google Scholar] [CrossRef]
- Mourgias-Alexandris, G.; Dabos, G.; Passalis, N.; Totović, A.; Tefas, A.; Pleros, N. All-Optical WDM Recurrent Neural Networks with Gating. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1–7. [Google Scholar] [CrossRef]
- Mourgias-Alexandris, G.; Passalis, N.; Dabos, G.; Totović, A.; Tefas, A.; Pleros, N. A Photonic Recurrent Neuron for Time-Series Classification. J. Light. Technol. 2021, 39, 1340–1347. [Google Scholar] [CrossRef]
- Totović, A.R.; Dabos, G.; Passalis, N.; Tefas, A.; Pleros, N. Femtojoule per MAC Neuromorphic Photonics: An Energy and Technology Roadmap. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1–15. [Google Scholar] [CrossRef]
- Agrell, E.; Karlsson, M.; Chraplyvy, A.R.; Richardson, D.J.; Krummrich, P.M.; Winzer, P.; Roberts, K.; Fischer, J.K.; Savory, S.J.; Eggleton, B.J.; et al. Roadmap of optical communications. J. Opt. 2016, 18, 063002. [Google Scholar] [CrossRef]
- Yu, S.; Wu, X.; Wang, Y.; Guo, X.; Tong, L. 2D Materials for Optical Modulation: Challenges and Opportunities. Adv. Mater. 2017, 29, 1606128. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Pan, Y.H.; Yang, R.; Bao, L.H.; Meng, L.; Luo, H.L.; Cai, Y.Q.; Liu, G.D.; Zhao, W.J.; Zhou, Z.; et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 2020, 11, 2453. [Google Scholar] [CrossRef]
- Huo, C.; Yan, Z.; Song, X.; Zeng, H. 2D materials via liquid exfoliation: A review on fabrication and applications. Sci. Bull. 2015, 60, 1994–2008. [Google Scholar] [CrossRef]
- Cai, Z.; Liu, B.; Zou, X.; Cheng, H.M. Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures. Chem. Rev. 2018, 118, 6091–6133. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Zhang, Y.; Tian, C.; Girit, C.; Zettl, A.; Crommie, M.; Shen, Y.R. Gate-Variable Optical Transitions in Graphene. Science 2008, 320, 206–209. [Google Scholar] [CrossRef]
- Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64–67. [Google Scholar] [CrossRef]
- Gruhler, N.; Benz, C.; Jang, H.; Ahn, J.H.; Danneau, R.; Pernice, W. High-quality Si3N4 circuits as a platform for graphene-based nanophotonic devices. Opt. Express 2013, 21, 31678–31689. [Google Scholar] [CrossRef] [Green Version]
- Phare, C.T.; Lee, Y.H.D.; Cardenas, J.; Lipson, M. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photonics 2015, 9, 511–514. [Google Scholar] [CrossRef]
- Shiramin, L.A.; Van Thourhout, D. Graphene Modulators and Switches Integrated on Silicon and Silicon Nitride Waveguide. IEEE J. Sel. Top. Quantum Electron. 2016, 23, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Fan, M.; Yang, H.; Zheng, P.; Hu, G.; Yun, B.; Cui, Y. Multilayer graphene electro-absorption optical modulator based on double-stripe silicon nitride waveguide. Opt. Express 2017, 25, 21619–21629. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Xu, Y.; Gao, Y.; Ji, L.; Wang, X.; Sun, X.; Zhang, D. A Broadband Polarization-Insensitive Graphene Modulator Based on Dual Built-in Orthogonal Slots Plasmonic Waveguide. Appl. Sci. 2021, 11, 1897. [Google Scholar] [CrossRef]
- Lee, B.S.; Kim, B.; Freitas, A.P.; Mohanty, A.; Zhu, Y.; Bhatt, G.R.; Hone, J.; Lipson, M. High-performance integrated graphene electro-optic modulator at cryogenic temperature. Nanophotonics 2021, 10, 99–104. [Google Scholar] [CrossRef]
- Lee, B.S.; Freitas, A.P.; Gil-Molina, A.; Shim, E.; Zhu, Y.; Hone, J.; Lipson, M. Scalable graphene platform for Tbits/s data transmission. arXiv 2020, arXiv:2011.08832. [Google Scholar]
- Datta, I.; Lee, B.; Lipson, M. Low Power Optical Phase Array Using Graphene on Silicon Photonics; Technical Report; Columbia University, New York, NY, USA, 2018.
- Wang, H.; Yuan, H.; Hong, S.S.; Li, Y.; Cui, Y. Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2664–2680. [Google Scholar] [CrossRef]
- Kang, M.; Kim, B.; Ryu, S.H.; Jung, S.W.; Kim, J.; Moreschini, L.; Jozwiak, C.; Rotenberg, E.; Bostwick, A.; Kim, K.S. Universal Mechanism of Band-Gap Engineering in Transition-Metal Dichalcogenides. Nano Lett. 2017, 17, 1610–1615. [Google Scholar] [CrossRef]
- Wei, G.; Stanev, T.K.; Czaplewski, D.A.; Jung, I.W.; Stern, N.P. Silicon-nitride photonic circuits interfaced with monolayer MoS2. Appl. Phys. Lett. 2015, 107, 091112. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Liu, D.C.; Tan, Z.L.; Liu, K.; Zhu, Z.H.; Qin, S.Q. CMOS-compatible WS2-based all-optical modulator. Acs Photonics 2018, 5, 342–346. [Google Scholar] [CrossRef]
- Datta, I.; Chae, S.H.; Bhatt, G.R.; Tadayon, M.A.; Li, B.; Yu, Y.; Park, C.; Park, J.; Cao, L.; Basov, D.; et al. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nat. Photonics 2020, 14, 256–262. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Z.; Li, J.; Shang, Z.; Wang, G.; Yin, J.; Chen, H.; Guo, K.; Yan, P. MoS2 hybrid integrated micro-ring resonator phase shifter based on a silicon nitride platform. Opt. Lett. 2022, 47, 949–952. [Google Scholar] [CrossRef] [PubMed]
- Pshenichnyuk, I.A.; Kosolobov, S.S.; Drachev, V.P. Towards Deep Integration of Electronics and Photonics. Appl. Sci. 2019, 9, 4834. [Google Scholar] [CrossRef] [Green Version]
- Betz, U.; Kharrazi Olsson, M.; Marthy, J.; Escolá, M.F.; Atamny, F. Thin films engineering of indium tin oxide: Large area flat panel displays application. Surf. Coatings Technol. 2006, 200, 5751–5759. [Google Scholar] [CrossRef]
- Maw, W.W. Capacitive Touch Screen. 1992. [Google Scholar]
- Dalapati, G.K.; Sharma, H.; Guchhait, A.; Chakrabarty, N.; Bamola, P.; Liu, Q.; Saianand, G.; Sai Krishna, A.M.; Mukhopadhyay, S.; Dey, A.; et al. Tin oxide for optoelectronic, photovoltaic and energy storage devices: A review. J. Mater. Chem. A 2021, 9, 16621–16684. [Google Scholar] [CrossRef]
- Chen, Y. Review of ZnO Transparent Conducting Oxides for solar applications. IOP Conf. Ser. Mater. Sci. Eng. 2018, 423, 012170. [Google Scholar] [CrossRef]
- Fernandez, S.; Gonzales, J.P.; Grandal, J.; Braña, A.F.; Gómez-Mancebo, M.B.; Gandía, J.J. Roles of Low Temperature Sputtered Indium Tin Oxide for Solar Photovoltaic Technology. Materials 2021, 14, 7758. [Google Scholar] [CrossRef]
- Neumann, F.; Genenko, Y.A.; Melzer, C.; Yampolskii, S.V.; Von Seggern, H. Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface. Phys. Rev. B—Condens. Matter Mater. Phys. 2007, 75, 205322. [Google Scholar] [CrossRef] [Green Version]
- Leuthold, J.; Freude, W.; Koos, C.; Melikyan, A.; Lindenmann, N. A surface plasmon polariton absorption modulator. Int. Conf. Transparent Opt. Networks 2011, 19, 8855–8869. [Google Scholar] [CrossRef] [Green Version]
- Swillam, M.A.; Zaki, A.O.; Kirah, K.; Shahada, L.A. On Chip Optical Modulator using Epsilon-Near-Zero Hybrid Plasmonic Platform. Sci. Rep. 2019, 9, 6669. [Google Scholar] [CrossRef]
- Shah, M.K.; Lu, R.; Liu, Y. Enhanced Performance of ITO-Assisted Electro-Absorption Optical Modulator Using Sidewall Angled Silicon Waveguide. IEEE Trans. Nanotechnol. 2018, 17, 412–418. [Google Scholar] [CrossRef]
- Lu, Z.; Zhao, W.; Shi, K. Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides. IEEE Photonics J. 2012, 4, 735–740. [Google Scholar] [CrossRef]
- Babicheva, V.E.; Kinsey, N.; Naik, G.V.; Ferrera, M.; Lavrinenko, A.V.; Shalaev, V.M.; Boltasseva, A. Towards CMOS-compatible nanophotonics: Ultra-compact modulators using alternative plasmonic materials. Opt. Express 2013, 21, 27326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Zang, K.; Kang, J.H.; Park, J.; Harris, J.S.; Kik, P.G.; Brongersma, M.L. Epsilon-Near-Zero Si Slot-Waveguide Modulator. ACS Photonics 2018, 5, 4484–4490. [Google Scholar] [CrossRef]
- Lee, H.W.; Papadakis, G.; Burgos, S.P.; Chander, K.; Kriesch, A.; Pala, R.; Peschel, U.; Atwater, H.A. Nanoscale conducting oxide PlasMOStor. Nano Lett. 2014, 14, 6463–6468. [Google Scholar] [CrossRef] [Green Version]
- Yi, F.; Shim, E.; Zhu, A.Y.; Zhu, H.; Reed, J.C.; Cubukcu, E. Voltage tuning of plasmonic absorbers by indium tin oxide. Appl. Phys. Lett. 2013, 102. [Google Scholar] [CrossRef] [Green Version]
- Son, K.S.; Lim Choi, D.; Nyeon Lee, H.; Geon Lee, W. The interfacial reaction between ITO and silicon nitride deposited by PECVD in fringe field switching device. Curr. Appl. Phys. 2002, 2, 229–232. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Y.; Capretti, A.; Dal Negro, L.; Klamkin, J. Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 192–198. [Google Scholar] [CrossRef]
- Bhowmik, T.; Chowdhary, A.K.; Kumar, A.; Sikdar, D. Guided-Mode Resonance based All-dielectric Optical Intensity Modulator. In 2021 IEEE Photonics Conference, IPC 2021—Proceedings; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Zheng, J.; Khanolkar, A.; Xu, P.; Colburn, S.; Deshmukh, S.; Myers, J.; Frantz, J.; Pop, E.; Hendrickson, J.; Doylend, J.; et al. GST-on-silicon hybrid nanophotonic integrated circuits: A non-volatile quasi-continuously reprogrammable platform. Opt. Mater. Express 2018, 8, 1551–1561. [Google Scholar] [CrossRef]
- Pérez, D.; Gasulla, I.; Mahapatra, P.D.; Capmany, J. Principles, fundamentals, and applications of programmable integrated photonics. Adv. Opt. Photonics 2020, 12, 709–786. [Google Scholar] [CrossRef]
- Feldmann, J.; Youngblood, N.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 2019, 569, 208–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cil, K. Temperature Dependent Characterization and Crystallization Dynamics of Ge2Sb2Te5 Thin Films and Nanoscale Structures. Ph.D. Thesis, University of Connecticut, Storrs, CT, USA, 2015. [Google Scholar]
- Chakraborty, I.; Saha, G.; Sengupta, A.; Roy, K. Toward Fast Neural Computing Using All-Photonic Phase Change Spiking Neurons. Sci. Rep. 2018, 8, 12980. [Google Scholar] [CrossRef] [PubMed]
- Bogaerts, W.; Pérez, D.; Capmany, J.; Miller, D.A.; Poon, J.; Englund, D.; Morichetti, F.; Melloni, A. Programmable photonic circuits. Nature 2020, 586, 207–216. [Google Scholar] [CrossRef]
- Cheng, Z.; Ríos, C.; Youngblood, N.; Wright, C.D.; Pernice, W.H.; Bhaskaran, H. Device-level photonic memories and logic applications using phase-change materials. Adv. Mater. 2018, 30, 1802435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sacher, W.D.; Poon, J.K. Dynamics of microring resonator modulators. Opt. Express 2008, 16, 15741–15753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Politi, A.; Matthews, J.C.; Thompson, M.G.; O’Brien, J.L. Integrated quantum photonics. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 1673–1684. [Google Scholar] [CrossRef] [Green Version]
- Silverstone, J.W.; Wang, J.; Bonneau, D.; Sibson, P.; Santagati, R.; Erven, C.; O’Brien, J.; Thompson, M. Silicon quantum photonics. In Proceedings of the 2016 International Conference on Optical MEMS and Nanophotonics (OMN), Singapore, 31 July–4 August 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–2. [Google Scholar] [CrossRef] [Green Version]
- Capmany, J.; Gasulla, I.; Pérez, D. The programmable processor. Nat. Photonics 2016, 10, 6–8. [Google Scholar] [CrossRef]
- Rios, C.; Stegmaier, M.; Cheng, Z.; Youngblood, N.; Wright, C.D.; Pernice, W.H.; Bhaskaran, H. Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics. Opt. Mater. Express 2018, 8, 2455–2470. [Google Scholar] [CrossRef]
- Wuttig, M.; Bhaskaran, H.; Taubner, T. Phase-change materials for non-volatile photonic applications. Nat. Photonics 2017, 11, 465–476. [Google Scholar] [CrossRef]
- Wuttig, M.; Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 2007, 6, 824–832. [Google Scholar] [CrossRef]
- Soref, R. Tutorial: Integrated-photonic switching structures. APL Photonics 2018, 3, 021101. [Google Scholar] [CrossRef] [Green Version]
- Raoux, S.; Xiong, F.; Wuttig, M.; Pop, E. Phase change materials and phase change memory. MRS Bull. 2014, 39, 703–710. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Yang, X.; Maß, T.W.; Hanss, J.; Lewin, M.; Michel, A.K.U.; Wuttig, M.; Taubner, T. Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material. Nat. Mater. 2016, 15, 870–875. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Hsu, T.; Raoux, S.; Wu, J.; Du, P.; Breitwisch, M.; Zhu, Y.; Lai, E.; Joseph, E.; Mittal, S.; et al. A high performance phase change memory with fast switching speed and high temperature retention by engineering the GexSbyTez phase change material. In Proceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011; pp. 3.4.1–3.4.4. [Google Scholar] [CrossRef]
- Bruns, G.; Merkelbach, P.; Schlockermann, C.; Salinga, M.; Wuttig, M.; Happ, T.; Philipp, J.; Kund, M. Nanosecond switching in GeTe phase change memory cells. Appl. Phys. Lett. 2009, 95, 043108. [Google Scholar] [CrossRef]
- Ciocchini, N.; Laudato, M.; Boniardi, M.; Varesi, E.; Fantini, P.; Lacaita, A.L.; Ielmini, D. Bipolar switching in chalcogenide phase change memory. Sci. Rep. 2016, 6, 29162. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Zheng, J.; Doylend, J.K.; Majumdar, A. Low-loss and broadband nonvolatile phase-change directional coupler switches. ACS Photonics 2019, 6, 553–557. [Google Scholar] [CrossRef] [Green Version]
- Farmakidis, N.; Youngblood, N.; Li, X.; Tan, J.; Swett, J.L.; Cheng, Z.; Wright, C.D.; Pernice, W.H.; Bhaskaran, H. Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality. Sci. Adv. 2019, 5, eaaw2687. [Google Scholar] [CrossRef] [Green Version]
- Ríos, C.; Stegmaier, M.; Hosseini, P.; Wang, D.; Scherer, T.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H. Integrated all-photonic non-volatile multi-level memory. Nat. Photonics 2015, 9, 725–732. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chou, J.B.; Li, J.; Li, H.; Du, Q.; Yadav, A.; Zhou, S.; Shalaginov, M.Y.; Fang, Z.; Zhong, H.; et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun. 2019, 10, 4279. [Google Scholar] [CrossRef]
- Faneca, J.; Carrillo, S.G.C.; Gemo, E.; de Galarreta, C.R.; Bucio, T.D.; Gardes, F.Y.; Bhaskaran, H.; Pernice, W.H.; Wright, C.D.; Baldycheva, A. Performance characteristics of phase-change integrated silicon nitride photonic devices in the O and C telecommunications bands. Opt. Mater. Express 2020, 10, 1778–1791. [Google Scholar] [CrossRef]
- Gemo, E.; Carrillo, S.G.C.; De Galarreta, C.R.; Baldycheva, A.; Hayat, H.; Youngblood, N.; Bhaskaran, H.; Pernice, W.H.; Wright, C.D. Plasmonically-enhanced all-optical integrated phase-change memory. Opt. Express 2019, 27, 24724–24737. [Google Scholar] [CrossRef]
- Shen, Y.; Harris, N.C.; Skirlo, S.; Prabhu, M.; Baehr-Jones, T.; Hochberg, M.; Sun, X.; Zhao, S.; Larochelle, H.; Englund, D.; et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 2017, 11, 441–446. [Google Scholar] [CrossRef]
- Li, X.; Youngblood, N.; Ríos, C.; Cheng, Z.; Wright, C.D.; Pernice, W.H.; Bhaskaran, H. Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell. Optica 2019, 6, 1–6. [Google Scholar] [CrossRef]
- Fantini, A.; Perniola, L.; Armand, M.; Nodin, J.; Sousa, V.; Persico, A.; Cluzel, J.; Jahan, C.; Maitrejean, S.; Lhostis, S.; et al. Comparative assessment of GST and GeTe materials for application to embedded phase-change memory devices. In Proceedings of the 2009 IEEE International Memory Workshop, Monterey, CA, USA, 10–14 May 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1–2. [Google Scholar] [CrossRef]
- Lu, Y.; Stegmaier, M.; Nukala, P.; Giambra, M.A.; Ferrari, S.; Busacca, A.; Pernice, W.H.; Agarwal, R. Mixed-mode operation of hybrid phase-change nanophotonic circuits. Nano Lett. 2017, 17, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Von Keitz, J.; Feldmann, J.; Gruhler, N.; Ríos, C.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H. Reconfigurable nanophotonic cavities with nonvolatile response. ACS Photonics 2018, 5, 4644–4649. [Google Scholar] [CrossRef] [Green Version]
- Stegmaier, M.; Rıos, C.; Bhaskaran, H.; Pernice, W.H. Thermo-optical effect in phase-change nanophotonics. ACS Photonics 2016, 3, 828–835. [Google Scholar] [CrossRef]
- Feldmann, J.; Stegmaier, M.; Gruhler, N.; Ríos, C.; Bhaskaran, H.; Wright, C.; Pernice, W. Calculating with light using a chip-scale all-optical abacus. Nat. Commun. 2017, 8, 1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feldmann, J.; Youngblood, N.; Karpov, M.; Gehring, H.; Li, X.; Stappers, M.; Le Gallo, M.; Fu, X.; Lukashchuk, A.; Raja, A.S.; et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 2021, 589, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Brückerhoff-Plückelmann, F.; Feldmann, J.; Gehring, H.; Zhou, W.; Wright, C.D.; Bhaskaran, H.; Pernice, W. Broadband photonic tensor core with integrated ultra-low crosstalk wavelength multiplexers. Nanophotonics 2022. [Google Scholar] [CrossRef]
- Pérez, D.; Gasulla, I.; Crudgington, L.; Thomson, D.J.; Khokhar, A.Z.; Li, K.; Cao, W.; Mashanovich, G.Z.; Capmany, J. Multipurpose silicon photonics signal processor core. Nat. Commun. 2017, 8, 636. [Google Scholar] [CrossRef] [Green Version]
- Nahmias, M.A.; De Lima, T.F.; Tait, A.N.; Peng, H.T.; Shastri, B.J.; Prucnal, P.R. Photonic multiply-accumulate operations for neural networks. IEEE J. Sel. Top. Quantum Electron. 2019, 26, 1–18. [Google Scholar] [CrossRef]
- Li, X.; Youngblood, N.; Cheng, Z.; Carrillo, S.G.C.; Gemo, E.; Pernice, W.H.; Wright, C.D.; Bhaskaran, H. Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing. Optica 2020, 7, 218–225. [Google Scholar] [CrossRef]
- Sebastian, A.; Le Gallo, M.; Burr, G.W.; Kim, S.; BrightSky, M.; Eleftheriou, E. Tutorial: Brain-inspired computing using phase-change memory devices. J. Appl. Phys. 2018, 124, 111101. [Google Scholar] [CrossRef] [Green Version]
- Faneca, J.; Domínguez Bucio, T.; Gardes, F.Y.; Baldycheva, A. O-band N-rich silicon nitride MZI based on GST. Appl. Phys. Lett. 2020, 116, 093502. [Google Scholar] [CrossRef]
- Fang, Z.; Zheng, J.; Saxena, A.; Whitehead, J.; Chen, Y.; Majumdar, A. Non-Volatile Reconfigurable Integrated Photonics Enabled by Broadband Low-Loss Phase Change Material. Adv. Opt. Mater. 2021, 9, 2002049. [Google Scholar] [CrossRef]
- Faneca, J.; Trimby, L.; Zeimpekis, I.; Delaney, M.; Hewak, D.W.; Gardes, F.Y.; Wright, C.D.; Baldycheva, A. On-chip sub-wavelength Bragg grating design based on novel low loss phase-change materials. Opt. Express 2020, 28, 16394–16406. [Google Scholar] [CrossRef]
- Delaney, M.; Zeimpekis, I.; Lawson, D.; Hewak, D.W.; Muskens, O.L. A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3. Adv. Funct. Mater. 2020, 30, 2002447. [Google Scholar] [CrossRef]
- Dong, W.; Liu, H.; Behera, J.K.; Lu, L.; Ng, R.J.; Sreekanth, K.V.; Zhou, X.; Yang, J.K.; Simpson, R.E. Wide bandgap phase change material tuned visible photonics. Adv. Funct. Mater. 2019, 29, 1806181. [Google Scholar] [CrossRef] [Green Version]
- Faneca, J.; Zeimpekis, I.; Ilie, S.; Domínguez Bucio, T.; Grabska, K.; Hewak, D.W.; Gardes, F.Y. Towards low loss non-volatile phase change materials in mid index waveguides. Neuromorphic Comput. Eng. 2021, 1, 014004. [Google Scholar] [CrossRef]
- Delaney, M.; Zeimpekis, I.; Du, H.; Yan, X.; Banakar, M.; Thomson, D.J.; Hewak, D.W.; Muskens, O.L. Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material. Sci. Adv. 2021, 7, eabg3500. [Google Scholar] [CrossRef]
- Redaelli, A.; Pirovano, A.; Benvenuti, A.; Lacaita, A.L. Threshold switching and phase transition numerical models for phase change memory simulations. J. Appl. Phys. 2008, 103, 6. [Google Scholar] [CrossRef]
- Zheng, J.; Fang, Z.; Wu, C.; Zhu, S.; Xu, P.; Doylend, J.K.; Deshmukh, S.; Pop, E.; Dunham, S.; Li, M.; et al. Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater. Adv. Mater. 2020, 32, 2001218. [Google Scholar] [CrossRef] [PubMed]
- Cen, Z.; Chen, T.; Ding, L.; Liu, Y.; Wong, J.; Yang, M.; Liu, Z.; Goh, W.; Zhu, F.; Fung, S. Evolution of electroluminescence from multiple Si-implanted silicon nitride films with thermal annealing. J. Appl. Phys. 2009, 105, 123101. [Google Scholar] [CrossRef] [Green Version]
- Cen, Z.H.; Chen, T.; Ding, L.; Liu, Y.; Wong, J.I.; Yang, M.; Liu, Z.; Goh, W.P.; Zhu, F.R.; Fung, S. Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions. Appl. Phys. Lett. 2009, 94, 041102. [Google Scholar] [CrossRef]
- Ríos, C.; Zhang, Y.; Shalaginov, M.Y.; Deckoff-Jones, S.; Wang, H.; An, S.; Zhang, H.; Kang, M.; Richardson, K.A.; Roberts, C.; et al. Multi-level electro-thermal switching of optical phase-change materials using graphene. Adv. Photonics Res. 2021, 2, 2000034. [Google Scholar] [CrossRef]
- Zheng, J.; Zhu, S.; Xu, P.; Dunham, S.; Majumdar, A. Modeling electrical switching of nonvolatile phase-change integrated nanophotonic structures with graphene heaters. ACS Appl. Mater. Interfaces 2020, 12, 21827–21836. [Google Scholar] [CrossRef]
- Faneca, J.; Meyer, S.; Gardes, F.; Chigrin, D. Graphene microheater for phase change chalcogenides based integrated photonic components. Opt. Mater. Express 2022, 1, 12. [Google Scholar] [CrossRef]
- Rahim, A.; Ryckeboer, E.; Subramanian, A.Z.; Kuyken, B.; Dhakal, A.; Raza, A.; Hermans, A.; Muneeb, M.; Li, Y.; Dave, U.; et al. Expanding the Silicon Photonics Portfolio with Silicon Nitride Photonic Integrated Circuits. J. Light. Technol. 2017, 35, 639–649. [Google Scholar] [CrossRef]
- Haeiwa, H.; Naganawa, T.; Kokubun, Y. Wide Range Center Wavelength Trimming of Vertically Coupled Microring Resonator Filter by Direct UV Irradiation to SiN Ring Core. IEEE Photonics Technol. Lett. 2004, 16, 135–137. [Google Scholar] [CrossRef]
- De Paoli, G.; Jantzen, S.L.; Dominguez Bucio, T.; Skandalos, I.; Holmes, C.; Smith, P.G.R.; Milosevic, M.M.; Gardes, F.Y. Laser trimming of the operating wavelength of silicon nitride racetrack resonators. Photonics Res. 2020, 8, 677. [Google Scholar] [CrossRef]
- Zhou, L.; Okamoto, K.; Yoo, S.J.B. Athermalizing and Trimming of Slotted Silicon Microring Resonators with UV-Sensitive PMMA Upper-Cladding. IEEE Photonics Technol. Lett. 2009, 21, 1175–1177. [Google Scholar] [CrossRef]
- Sparacin, D.K.; Hong, C.Y.; Kimerling, L.C.; Michel, J.; Lock, J.P.; Gleason, K.K. Trimming of microring resonators by photo-oxidation of a plasma-polymerized organosilane cladding material. Opt. Lett. 2005, 30, 2251–2253. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Frankis, H.C.; Bradley, J.D.B.; Knights, A.P. Post-fabrication resonance trimming of Si3N4 photonic circuits via localized thermal annealing of a sputter-deposited SiO2 cladding. Opt. Mater. Express 2021, 11, 2401–2412. [Google Scholar] [CrossRef]
- Heck, M.J.; Bowers, J.E. Energy efficient and energy proportional optical interconnects for multi-core processors: Driving the need for on-chip sources. IEEE J. Sel. Top. Quantum Electron. 2013, 20, 332–343. [Google Scholar] [CrossRef]
- Rickman, A. The commercialization of silicon photonics. Nat. Photonics 2014, 8, 579–582. [Google Scholar] [CrossRef]
- Tang, M.; Park, J.S.; Wang, Z.; Chen, S.; Jurczak, P.; Seeds, A.; Liu, H. Integration of III-V lasers on Si for Si photonics. Prog. Quantum Electron. 2019, 66, 1–18. [Google Scholar] [CrossRef]
- Wirths, S.; Geiger, R.; Von Den Driesch, N.; Mussler, G.; Stoica, T.; Mantl, S.; Ikonic, Z.; Luysberg, M.; Chiussi, S.; Hartmann, J.M.; et al. Lasing in direct-bandgap GeSn alloy grown on Si. Nat. Photonics 2015, 9, 88–92. [Google Scholar] [CrossRef] [Green Version]
- Fadaly, E.M.; Dijkstra, A.; Suckert, J.R.; Ziss, D.; van Tilburg, M.A.; Mao, C.; Ren, Y.; van Lange, V.T.; Korzun, K.; Kölling, S.; et al. Direct-bandgap emission from hexagonal Ge and SiGe alloys. Nature 2020, 580, 205–209. [Google Scholar] [CrossRef] [Green Version]
- Wirths, S.; Buca, D.; Mantl, S. Si–Ge–Sn alloys: From growth to applications. Prog. Cryst. Growth Charact. Mater. 2016, 62, 1–39. [Google Scholar] [CrossRef]
- Zhou, Z.; Yin, B.; Michel, J. On-chip light sources for silicon photonics. Light. Sci. Appl. 2015, 4, e358. [Google Scholar] [CrossRef]
- Malik, A.; Xiang, C.; Chang, L.; Jin, W.; Guo, J.; Tran, M.; Bowers, J. Low noise, tunable silicon photonic lasers. Appl. Phys. Rev. 2021, 8, 031306. [Google Scholar] [CrossRef]
- Arbabi, A.; Goddard, L.L. Measurements of the refractive indices and thermo-optic coefficients of Si 3 N 4 and SiO x using microring resonances. Opt. Lett. 2013, 38, 3878–3881. [Google Scholar] [CrossRef] [PubMed]
- Komma, J.; Schwarz, C.; Hofmann, G.; Heinert, D.; Nawrodt, R. Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures. Appl. Phys. Lett. 2012, 101, 041905. [Google Scholar] [CrossRef] [Green Version]
- Tsang, H.K.; Wong, C.S.; Liang, T.K.; Day, I.; Roberts, S.; Harpin, A.; Drake, J.; Asghari, M. Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength. Appl. Phys. Lett. 2002, 80, 416–418. [Google Scholar] [CrossRef]
- Wasisto, H.S.; Prades, J.D.; Gülink, J.; Waag, A. Beyond solid-state lighting: Miniaturization, hybrid integration, and applications of GaN nano-and micro-LEDs. Appl. Phys. Rev. 2019, 6, 041315. [Google Scholar] [CrossRef] [Green Version]
- Yanikgonul, S.; Leong, V.; Ong, J.R.; Hu, T.; Siew, S.Y.; Png, C.E.; Krivitsky, L. Integrated avalanche photodetectors for visible light. Nat. Commun. 2021, 12, 1834. [Google Scholar] [CrossRef]
- Terris, B.; Mamin, H.; Rugar, D. Near-field optical data storage. Appl. Phys. Lett. 1996, 68, 141–143. [Google Scholar] [CrossRef]
- Kumari, S.; Gustavsson, J.S.; Wang, R.; Haglund, E.P.; Westbergh, P.; Sanchez, D.; Haglund, E.; Haglund, Å.; Bengtsson, J.; Le Thomas, N.; et al. Integration of GaAs-based VCSEL array on SiN platform with HCG reflectors for WDM applications. In High Contrast Metastructures IV; SPIE: Bellingham, WA, USA, 2015; Volume 9372, pp. 142–148. [Google Scholar] [CrossRef] [Green Version]
- Kumari, S.; Haglund, E.P.; Gustavsson, J.S.; Larsson, A.; Roelkens, G.; Baets, R.G. Vertical-Cavity Silicon-Integrated Laser with In-Plane Waveguide Emission at 850 nm. Laser Photonics Rev. 2018, 12, 1700206. [Google Scholar] [CrossRef] [Green Version]
- Kumari, S.; Gustavsson, J.; Haglund, E.P.; Bengtsson, J.; Larsson, A.; Roelkens, G.; Baets, R. Design of an 845-nm GaAs vertical-cavity silicon-integrated laser with an intracavity grating for coupling to a SiN waveguide circuit. IEEE Photonics J. 2017, 9, 1–9. [Google Scholar] [CrossRef]
- Roelkens, G.; Haglund, E.P.; Kumari, S.; Haglund, E.; Gustavsson, J.S.; Baets, R.; Larsson, A. 850 nm hybrid vertical cavity laser integration for on-chip silicon photonics light sources. In Optical Fiber Communication Conference; Optical Society of America: Bellingham, WA, USA, 2017; p. W3E-6. [Google Scholar] [CrossRef] [Green Version]
- Morin, T.J.; Chang, L.; Jin, W.; Li, C.; Guo, J.; Park, H.; Tran, M.A.; Komljenovic, T.; Bowers, J.E. CMOS-foundry-based blue and violet photonics. Optica 2021, 8, 755–756. [Google Scholar] [CrossRef]
- Arefin, R.; Ramachandra, S.H.; Jung, H.; You, W.; Hasan, S.M.; Turski, H.; Dwivedi, S.; Arafin, S. III-N/Si3N4 Integrated Photonics Platform for Blue Wavelengths. IEEE J. Quantum Electron. 2020, 56, 1–9. [Google Scholar] [CrossRef]
- Lin, H.; Luo, Z.; Gu, T.; Kimerling, L.C.; Wada, K.; Agarwal, A.; Hu, J. Mid-infrared integrated photonics on silicon: A perspective. Nanophotonics 2018, 7, 393–420. [Google Scholar] [CrossRef]
- Shim, E.; Gil-Molina, A.; Westreich, O.; Dikmelik, Y.; Lascola, K.; Gaeta, A.L.; Lipson, M. Tunable single-mode chip-scale mid-infrared laser. Commun. Phys. 2021, 4, 268. [Google Scholar] [CrossRef]
- Iadanza, S.; Bakoz, A.P.; Singaravelu, P.K.; Panettieri, D.; Schulz, S.; Devarapu, G.C.R.; Guerber, S.; Baudot, C.; Boeuf, F.; Hegarty, S.; et al. Thermally stable hybrid cavity laser based on silicon nitride gratings. Appl. Opt. 2018, 57, E218–E223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Beeck, C.O.; Haq, B.; Elsinger, L.; Gocalinska, A.; Pelucchi, E.; Corbett, B.; Roelkens, G.; Kuyken, B. Heterogeneous III-V on silicon nitride amplifiers and lasers via microtransfer printing. Optica 2020, 7, 386–393. [Google Scholar] [CrossRef]
- Xiang, C.; Jin, W.; Guo, J.; Peters, J.D.; Kennedy, M.; Selvidge, J.; Morton, P.A.; Bowers, J.E. Narrow-linewidth III-V/Si/Si3N4 laser using multilayer heterogeneous integration. Optica 2020, 7, 20–21. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Zhang, C.; Tran, M.A.; Komljenovic, T. Heterogeneous silicon nitride photonics. Optica 2020, 7, 336–337. [Google Scholar] [CrossRef]
- Xiang, C.; Morton, P.A.; Bowers, J.E. 1550 nm laser with 320 Hz Lorentzian linewidth based on semiconductor gain chip and extended Si3N4 Bragg grating. In Science and Innovations; Optical Society of America: Bellingham, WA, USA, 2019; p. SW4N–6. [Google Scholar] [CrossRef]
- Fan, Y.; van Rees, A.; Van der Slot, P.J.; Mak, J.; Oldenbeuving, R.M.; Hoekman, M.; Geskus, D.; Roeloffzen, C.G.; Boller, K.J. Hybrid integrated InP-Si3N4 diode laser with a 40-Hz intrinsic linewidth. Opt. Express 2020, 28, 21713–21728. [Google Scholar] [CrossRef]
- Stern, B.; Ji, X.; Dutt, A.; Lipson, M. Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator. Opt. Lett. 2017, 42, 4541–4544. [Google Scholar] [CrossRef]
- Theurer, M.; Moehrle, M.; Sigmund, A.; Velthaus, K.O.; Oldenbeuving, R.M.; Wevers, L.; Postma, F.M.; Mateman, R.; Schreuder, F.; Geskus, D.; et al. Flip-chip integration of InP to SiN photonic integrated circuits. J. Light. Technol. 2020, 38, 2630–2636. [Google Scholar] [CrossRef]
- Stern, B.; Ji, X.; Okawachi, Y.; Gaeta, A.L.; Lipson, M. Battery-operated integrated frequency comb generator. Nature 2018, 562, 401–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spencer, D.T.; Drake, T.; Briles, T.C.; Stone, J.; Sinclair, L.C.; Fredrick, C.; Li, Q.; Westly, D.; Ilic, B.R.; Bluestone, A.; et al. An optical-frequency synthesizer using integrated photonics. Nature 2018, 557, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Oldenbeuving, R.M.; Klein, E.J.; Lee, C.J.; Song, H.; Khan, M.R.; Offerhaus, H.L.; van der Slot, P.J.; Boller, K.J. A hybrid semiconductor-glass waveguide laser. In Laser Sources and Applications II; SPIE: Bellingham, WA, USA, 2014; Volume 9135, pp. 231–236. [Google Scholar] [CrossRef] [Green Version]
- De Beeck, C.O.; Elsinger, L.; Haq, B.; Roelkens, G.; Kuyken, B. Heterogeneously integrated laser on a silicon nitride platform via micro-transfer printing. In Frontiers in Optics; Optical Society of America: Bellingham, WA, USA, 2019; p. FTu6B–1. [Google Scholar] [CrossRef]
- Cuyvers, S.; Haq, B.; Op de Beeck, C.; Poelman, S.; Hermans, A.; Wang, Z.; Gocalinska, A.; Pelucchi, E.; Corbett, B.; Roelkens, G.; et al. Low Noise Heterogeneous III-V-on-Silicon-Nitride Mode-Locked Comb Laser. Laser Photonics Rev. 2021, 15, 2000485. [Google Scholar] [CrossRef]
- Oldenbeuving, R.; Klein, E.; Offerhaus, H.L.; Lee, C.J.; Song, H.; Boller, K.J. 25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity. Laser Phys. Lett. 2012, 10, 015804. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, B.; Yang, S.; Chen, H.; Chen, M. Robust hybrid laser linewidth reduction using Si3N4-based subwavelength hole defect assisted microring reflector. Photonics Res. 2021, 9, 558–566. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, H.; Ren, X. Monolithic Silicon-based Active Photonic Integration with Specially Designed III/V Laser and Si3N4 Interlayer Optical Coupler. In Proceedings of the 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC), Beijing, China, 24–27 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–3. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, H.; Ren, X.; Huang, Y. Monolithic integration of laser onto multilayer silicon nitride photonic integrated circuits with high efficiency at telecom wavelength. Opt. Express 2021, 29, 28912–28923. [Google Scholar] [CrossRef]
- Zhu, Y.; Zeng, S.; Zhu, L. Optical beam steering by using tunable, narrow-linewidth butt-coupled hybrid lasers in a silicon nitride photonics platform. Photonics Res. 2020, 8, 375–380. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, L. Narrow-linewidth, tunable external cavity dual-band diode lasers through InP/GaAs-Si3N4 hybrid integration. Opt. Express 2019, 27, 2354–2362. [Google Scholar] [CrossRef]
- Lin, Y.; Browning, C.; Timens, R.B.; Geuzebroek, D.H.; Roeloffzen, C.G.; Hoekman, M.; Geskus, D.; Oldenbeuving, R.M.; Heideman, R.G.; Fan, Y.; et al. Characterization of hybrid InP-TriPleX photonic integrated tunable lasers based on silicon nitride (Si3N4/SiO2) microring resonators for optical coherent system. IEEE Photonics J. 2018, 10, 1–8. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Chen, H.; Yang, S.; Chen, M. Tunable self-injected Fabry–Perot laser diode coupled to an external high-Q Si3N4/SiO2 microring resonator. J. Light. Technol. 2018, 36, 3269–3274. [Google Scholar] [CrossRef]
- Bovington, J.; Heck, M.; Bowers, J. Heterogeneous lasers and coupling to Si 3 N 4 near 1060 nm. Opt. Lett. 2014, 39, 6017–6020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Zhao, R.; Zhou, G.; Lu, L.; Stroganov, A.; Nisar, M.S.; Chen, J.; Zhou, L. Thermally Tuned High-Performance III-V/Si3N4 External Cavity Laser. IEEE Photonics J. 2021, 13, 1–13. [Google Scholar] [CrossRef]
- Siddharth, A.; Wunderer, T.; Lihachev, G.; Voloshin, A.S.; Haller, C.; Wang, R.N.; Teepe, M.; Yang, Z.; Liu, J.; Riemensberger, J.; et al. Near ultraviolet photonic integrated lasers based on silicon nitride. arXiv 2021, arXiv:2112.02372. [Google Scholar] [CrossRef]
- Vissers, E.; Poelman, S.; de Beeck, C.O.; Van Gasse, K.; Kuyken, B. Hybrid integrated mode-locked laser diodes with a silicon nitride extended cavity. Opt. Express 2021, 29, 15013–15022. [Google Scholar] [CrossRef]
- Ibrahimi, Y.; Boust, S.; Wilmart, Q.; Paret, J.F.; Garreau, A.; Mekhazni, K.; Fortin, C.; Duport, F.; Fedeli, J.M.; Sciancalepore, C.; et al. Low FSR Mode-Locked Laser Based on InP-Si3N4 Hybrid Integration. J. Light. Technol. 2021, 39, 7573–7580. [Google Scholar] [CrossRef]
- Hermans, A.; Van Gasse, K.; Kjellman, J.Ø.; Caër, C.; Nakamura, T.; Inada, Y.; Hisada, K.; Hirasawa, T.; Cuyvers, S.; Kumari, S.; et al. High-pulse-energy III-V-on-silicon-nitride mode-locked laser. APL Photonics 2021, 6, 096102. [Google Scholar] [CrossRef]
- Goyvaerts, J.; Grabowski, A.; Gustavsson, J.; Kumari, S.; Stassen, A.; Baets, R.; Larsson, A.; Roelkens, G. Enabling VCSEL-on-silicon nitride photonic integrated circuits with micro-transfer-printing. Optica 2021, 8, 1573–1580. [Google Scholar] [CrossRef]
- Bastiaens, H.; Neijts, G.; Memon, A.; Fan, Y.; Mak, J.; Geskus, D.; Hoekman, M.; Moskalenko, V.; Bente, E.; Boller, K.J. First demonstration of a hybrid integrated InP-Si3N4 diode laser for broadband optical frequency comb generation. In Novel In-Plane Semiconductor Lasers XX; International Society for Optics and Photonics: Bellingham, WA, USA, 2021; Volume 11705, p. 1170508. [Google Scholar] [CrossRef]
- Van Rees, A.; Fan, Y.; Geskus, D.; Klein, E.J.; Oldenbeuving, R.M.; Van Der Slot, P.J.; Boller, K.J. Ring resonator enhanced mode-hop-free wavelength tuning of an integrated extended-cavity laser. Opt. Express 2020, 28, 5669–5683. [Google Scholar] [CrossRef]
- Epping, J.P.; Leinse, A.; Oldenbeuving, R.M.; Visscher, I.; Geuzebroek, D.; Geskus, D.; van Rees, A.; Boller, K.J.; Theurer, M.; Möhrle, M.; et al. Hybrid integrated silicon nitride lasers. In Physics and Simulation of Optoelectronic Devices XXVIII; International Society for Optics and Photonics: Bellingham, WA, USA, 2020; Volume 11274, p. 112741L. [Google Scholar] [CrossRef]
- Boust, S.; El Dirani, H.; Youssef, L.; Robert, Y.; Larrue, A.; Petit-Etienne, C.; Vinet, E.; Kerdiles, S.; Pargon, E.; Faugeron, M.; et al. Microcomb source based on InP DFB/Si3N4 microring butt-coupling. J. Light. Technol. 2020, 38, 5517–5525. [Google Scholar] [CrossRef]
- Boust, S.; Ibrahimi, Y.; Paret, J.; Garreau, A.; Mekhazni, K.; Fortin, C.; Duport, F.; Vallet, M.; Fedeli, J.; van Dijk, F. Single-mode and multi-mode DBR lasers using InP-Si3N4/SiO2 integration. In Proceedings of the ECIO2020, European Conference on Integrated Optics (ECIO), Paris, France, 25 June 2020; p. S7. [Google Scholar]
- Theurer, M.; Moehrle, M.; Sigmund, A.; Velthaus, K.O.; Oldenbeuving, R.; Wevers, L.; Postma, F.; Mateman, R.; Schreuder, F.; Geskus, D.; et al. Flip-chip integration of InP and SiN. IEEE Photonics Technol. Lett. 2019, 31, 273–276. [Google Scholar] [CrossRef]
- Gallacher, K.; Sinclair, M.; Millar, R.W.; Sharp, O.; Mirando, F.; Ternent, G.; Mills, G.; Casey, B.; Paul, D.J. Integrated DFB lasers on Si3N4 photonic platform for chip-scale atomic systems. In Proceedings of the 2019 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–2. [Google Scholar] [CrossRef]
- Fan, Y.; Oldenbeuving, R.M.; Roeloffzen, C.G.; Hoekman, M.; Geskus, D.; Heideman, R.G.; Boller, K.J. 290 Hz intrinsic linewidth from an integrated optical chip-based widely tunable InP-Si3N4 hybrid laser. In CLEO: QELS_Fundamental Science; Optical Society of America: Bellingham, WA, USA, 2017; p. JTh5C–9. [Google Scholar]
- Fan, Y.; Epping, J.P.; Oldenbeuving, R.M.; Roeloffzen, C.G.; Hoekman, M.; Dekker, R.; Heideman, R.G.; van der Slot, P.J.; Boller, K.J. Optically Integrated InP–Si3N4 Hybrid Laser. IEEE Photonics J. 2016, 8, 1–11. [Google Scholar] [CrossRef]
- Smit, M.; Williams, K.; Van Der Tol, J. Past, present, and future of InP-based photonic integration. APL Photonics 2019, 4, 050901. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Feng, Q.; Wang, Z.; Wang, T.; Zhang, J. Perspective: Optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates. J. Semicond. 2019, 40, 101303. [Google Scholar] [CrossRef]
- Jin, W.; Yang, Q.F.; Chang, L.; Shen, B.; Wang, H.; Leal, M.A.; Wu, L.; Gao, M.; Feshali, A.; Paniccia, M.; et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics 2021, 15, 346–353. [Google Scholar] [CrossRef]
- Kharas, D.; Plant, J.J.; Loh, W.; Swint, R.B.; Bramhavar, S.; Heidelberger, C.; Yegnanarayanan, S.; Juodawlkis, P.W. High-power (>300 mW) on-chip laser with passively aligned silicon-nitride waveguide DBR cavity. IEEE Photonics J. 2020, 12, 1–12. [Google Scholar] [CrossRef]
- Jing, Q.; Li, J.; Zhang, B.; Li, Y.; Yang, S.; Chen, H.; Chen, M. The wavelength tuning performance of narrow linewidth laser-diode coupled to an external high-Q Si3N4 micro-ring resonator. In Semiconductor Lasers and Applications XI; SPIE: Bellingham, WA, USA, 2021; Volume 11891, pp. 152–156. [Google Scholar] [CrossRef]
- Pfeifle, J.; Brasch, V.; Lauermann, M.; Yu, Y.; Wegner, D.; Herr, T.; Hartinger, K.; Schindler, P.; Li, J.; Hillerkuss, D.; et al. Coherent terabit communications with microresonator Kerr frequency combs. Nat. Photonics 2014, 8, 375–380. [Google Scholar] [CrossRef] [Green Version]
- Kuse, N.; Fermann, M.E. Frequency-modulated comb LIDAR. APL Photonics 2019, 4. [Google Scholar] [CrossRef]
- Galli, I.; de Cumis, M.S.; Cappelli, F.; Bartalini, S.; Mazzotti, D.; Borri, S.; Montori, A.; Akikusa, N.; Yamanishi, M.; Giusfredi, G.; et al. Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy. Appl. Phys. Lett. 2013, 102, 121117. [Google Scholar] [CrossRef]
- Qin-Fang, X.; Mo-Juan, Y.; De-Huan, K.; Ye-Bing, W.; Ben-Quan, L.; Yang, G.; Hong, C. Optical frequency comb active filtering and amplification for second cooling laser of strontium optical clock. Acta Phys. Sin. 2018, 67. [Google Scholar] [CrossRef]
- Yu, L.; Lu, D.; Pan, B.; Zhang, L.; Guo, L.; Li, Z.; Zhao, L.J. Widely tunable narrow-linewidth lasers using self-injection DBR lasers. IEEE Photonics Technol. Lett. 2014, 27, 50–53. [Google Scholar] [CrossRef]
- Faugeron, M.; Tran, M.; Parillaud, O.; Chtioui, M.; Robert, Y.; Vinet, E.; Enard, A.; Jacquet, J.; Van Dijk, F. High-power tunable dilute mode DFB laser with low RIN and narrow linewidth. IEEE Photonics Technol. Lett. 2012, 25, 7–10. [Google Scholar] [CrossRef]
- Tromborg, B.; Osmundsen, J.; Olesen, H. Stability analysis for a semiconductor laser in an external cavity. IEEE J. Quantum Electron. 1984, 20, 1023–1032. [Google Scholar] [CrossRef]
- Fang, Z.; Cai, H.; Chen, G.; Qu, R. Single Frequency Semiconductor Lasers; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Puckett, M.W.; Wang, J.; Bose, D.; Brodnik, G.M.; Wu, J.; Nelson, K.; Blumenthal, D.J. Silicon nitride ring resonators with 0.123 dB/m loss and Q-factors of 216 million for nonlinear optical applications. In The European Conference on Lasers and Electro-Optics; Optical Society of America: Bellingham, WA, USA, 2019; p. ce_11_3. [Google Scholar] [CrossRef]
- Ferdous, F.; Miao, H.; Leaird, D.E.; Srinivasan, K.; Wang, J.; Chen, L.; Varghese, L.T.; Weiner, A.M. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nat. Photonics 2011, 5, 770–776. [Google Scholar] [CrossRef]
- Nitiss, E.; Hu, J.; Stroganov, A.; Brès, C.S. Optically reconfigurable quasi-phase-matching in silicon nitride microresonators. Nat. Photonics 2022, 16, 134–141. [Google Scholar] [CrossRef]
- Vyrsokinos, K.; Chatzitheocharis, D.; Papadovasilakis, M.; Ketzaki, D.; Calo, C.; Caillaud, C.; Sacchetto, D.; Zervas, M.; Reithmaier, J.; Sichkovskyi, V.; et al. MOICANA: Monolithic cointegration of QD-based InP on SiN as a versatile platform for the demonstration of high-performance and low-cost PIC transmitters. In Optical Interconnects XIX; SPIE: Bellingham, WA, USA, 2019; Volume 10924, pp. 159–169. [Google Scholar] [CrossRef]
- Watts, M.R.; Sun, J.; Timurdogan, E.; Hosseini, E.S.; Sorace-Agaskar, C.; Yaacobi, A.; Su, Z.; Moresco, M.; Bradley, J.; Leake, G.; et al. Very large scale integrated photonics (VLSI-P). In CLEO: Science and Innovations; Optical Society of America: Bellingham, WA, USA, 2014; p. SM4O–4. [Google Scholar] [CrossRef]
Fabrication | Deposition | Material | Core | C-Band | Substrate |
---|---|---|---|---|---|
Approach | Method | (nm) | ( ) | (mm) | |
Thermal cycling [22,24,25] | LPCVD | Si3N4 | 1800 × 910 | (1550 nm) | 100 |
Photonic Damascene reflow [21,27,28,29] | LPCVD | Si3N4 | 2000 × 600 | (1550 nm) | 100 |
Multistep | LPCVD | Si3N4 | 1800 × 645 | (1550 nm) | 76 |
Annealing [31,32] | Si-rich SiN | 1850 × 600 | (1550 nm) | ||
Twist-and-grow [33,34,35] | LPCVD | Si3N4 | 1600 × 800 | (1560 nm) | 200 |
Material [Reference] | Refractive Index (@1550 nm) | Deposition Method | Core (nm) | Propagation Losses (@1550 nm) () | Kerr Coefficient (2) |
---|---|---|---|---|---|
Si-rich SiN [32] | 2.07 | LPCVD (annealing) | 1800 × 645 | 0.4 | 0.6 × 10 |
Si-rich SiN [39] | 2.49 | PECVD | 1000 × 297 | 1.5 | 1.61 × 10 |
Si-rich SiN [39] | 2.71 | PECVD | 1000 × 308 | 6 | 2 × 10 |
USRN [43] | 3.1 | PECVD | 550 × 300 | 4.5 | 28 × 10 |
USRN [48] | 450 × 330 | 3 |
Layer ID | Refractive Index (@1550 nm) | Thickness (nm) |
---|---|---|
01 | 2.01 | 300 |
02 | 2.49 | 297 |
03 | 2.71 | 308 |
Layer ID | (Wm) W = 500 nm | (Wm) W = 700 nm | (Wm) W = 1000 nm |
---|---|---|---|
01 | Negligible | Negligible | Negligible |
02 | Negligible | Negligible | Negligible |
03 | 1.75 | 1.44 | 1.11 |
Modulator Type | Modulation Frequency | Modulation Figure of Merit (V L or V) |
---|---|---|
Phase modulator (2016) [82] | 1 kHz | 900 V·cm |
Phase modulator (2015) [95] | - | V |
Ring resonator (2008) [96] | 10 GHz | - |
Configuration | Platform | Modulation Bandwidth (GHz) | Modulation Efficiency | Loss (dB/cm) |
---|---|---|---|---|
Ring resonator [82] | SiON or SiN & EO polymer | 10 | - | 0.8 |
Mach–Zehnder interferometer [106] | PECVD Si-rich SiN & LN | 100 | V·cm | 0.2 |
Ring resonator [84] | PECVD SiN & BTO | - | V·cm | |
Ring resonator [132] | PECVD SiN & Graphene | 30 | dB/V | - |
Ring resonator [144] | LPCVD SiN & MoS | - | V·cm | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gardes, F.; Shooa, A.; De Paoli, G.; Skandalos, I.; Ilie, S.; Rutirawut, T.; Talataisong, W.; Faneca, J.; Vitali, V.; Hou, Y.; et al. A Review of Capabilities and Scope for Hybrid Integration Offered by Silicon-Nitride-Based Photonic Integrated Circuits. Sensors 2022, 22, 4227. https://doi.org/10.3390/s22114227
Gardes F, Shooa A, De Paoli G, Skandalos I, Ilie S, Rutirawut T, Talataisong W, Faneca J, Vitali V, Hou Y, et al. A Review of Capabilities and Scope for Hybrid Integration Offered by Silicon-Nitride-Based Photonic Integrated Circuits. Sensors. 2022; 22(11):4227. https://doi.org/10.3390/s22114227
Chicago/Turabian StyleGardes, Frederic, Afrooz Shooa, Greta De Paoli, Ilias Skandalos, Stefan Ilie, Teerapat Rutirawut, Wanvisa Talataisong, Joaquín Faneca, Valerio Vitali, Yaonan Hou, and et al. 2022. "A Review of Capabilities and Scope for Hybrid Integration Offered by Silicon-Nitride-Based Photonic Integrated Circuits" Sensors 22, no. 11: 4227. https://doi.org/10.3390/s22114227
APA StyleGardes, F., Shooa, A., De Paoli, G., Skandalos, I., Ilie, S., Rutirawut, T., Talataisong, W., Faneca, J., Vitali, V., Hou, Y., Bucio, T. D., Zeimpekis, I., Lacava, C., & Petropoulos, P. (2022). A Review of Capabilities and Scope for Hybrid Integration Offered by Silicon-Nitride-Based Photonic Integrated Circuits. Sensors, 22(11), 4227. https://doi.org/10.3390/s22114227