Caged-Sphere Optofluidic Sensors: Whispering Gallery Resonators in Wicking Microfluidics
Abstract
:1. Introduction
2. Experimental Setup
2.1. Active WGM Microspheres
2.2. Open Microfluidic Chip Fabrication
2.3. Interrogation Setup
3. Results and Discussion
3.1. WGM-Based Sensing of Single Glucose Concentrations
3.2. Continuous Sampling and Monitoring with Evaporation-Driven Flow
3.3. Cycling and Reversibility Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, X.; White, I.M. Optofluidic microsystems for chemical and biological analysis. Nat. Photonics 2011, 5, 591. [Google Scholar] [CrossRef] [PubMed]
- Ozcelik, D.; Cai, H.; Leake, K.D.; Hawkins, A.R.; Schmidt, H. Optofluidic bioanalysis: Fundamentals and applications. Nanophotonics 2017, 6, 647–661. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.; Chen, H.M.; Freeman, L.M.; Fainman, Y. Optofluidic devices and applications in photonics, sensing and imaging. Lab Chip 2012, 12, 3543–3551. [Google Scholar] [CrossRef]
- Wang, J.; Maier, S.A.; Tittl, A. Trends in Nanophotonics-Enabled Optofluidic Biosensors. Adv. Opt. Mater. 2022, 10, 2102366. [Google Scholar] [CrossRef]
- Bhat, M.P.; Kurkuri, M.; Losic, D.; Kigga, M.; Altalhi, T. New optofluidic based lab-on-a-chip device for the real-time fluoride analysis. Anal. Chim. Acta 2021, 1159, 338439. [Google Scholar] [CrossRef] [PubMed]
- Parker, H.E.; Sengupta, S.; Harish, A.V.; Soares, R.G.; Joensson, H.N.; Margulis, W.; Russom, A.; Laurell, F. A Lab-in-a-Fiber optofluidic device using droplet microfluidics and laser-induced fluorescence for virus detection. Sci. Rep. 2022, 12, 3539. [Google Scholar] [CrossRef] [PubMed]
- Szydzik, C.; Gavela, A.; Herranz, S.; Roccisano, J.; Knoerzer, M.; Thurgood, P.; Khoshmanesh, K.; Mitchell, A.; Lechuga, L. An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics. Lab Chip 2017, 17, 2793–2804. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, T.; Riesen, N.; Meldrum, A.; Fan, X.; Hall, J.M.; Monro, T.M.; François, A. Fluorescent and lasing whispering gallery mode microresonators for sensing applications. Laser Photonics Rev. 2017, 11, 1600265. [Google Scholar] [CrossRef]
- Toropov, N.; Cabello, G.; Serrano, M.P.; Gutha, R.R.; Rafti, M.; Vollmer, F. Review of biosensing with whispering-gallery mode lasers. Light Sci. Appl. 2021, 10, 42. [Google Scholar] [CrossRef]
- Foreman, M.R.; Swaim, J.D.; Vollmer, F. Whispering gallery mode sensors. Adv. Opt. Photonics 2015, 7, 168–240. [Google Scholar] [CrossRef]
- Vollmer, F.; Braun, D.; Libchaber, A.; Khoshsima, M.; Teraoka, I.; Arnold, S. Protein detection by optical shift of a resonant microcavity. Appl. Phys. Lett. 2002, 80, 4057–4059. [Google Scholar] [CrossRef]
- Kim, E.; Baaske, M.D.; Vollmer, F. Towards next-generation label-free biosensors: Recent advances in whispering gallery mode sensors. Lab Chip 2017, 17, 1190–1205. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Painter, O.; Vahala, K.J. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett. 2000, 85, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnold, S.; Khoshsima, M.; Teraoka, I.; Holler, S.; Vollmer, F. Shift of whispering-gallery modes in microspheres by protein adsorption. Opt. Lett. 2003, 28, 272–274. [Google Scholar] [CrossRef] [Green Version]
- Vollmer, F.; Arnold, S. Whispering-gallery-mode biosensing: Label-free detection down to single molecules. Nat. Methods 2008, 5, 591. [Google Scholar] [CrossRef]
- Baaske, M.D.; Foreman, M.R.; Vollmer, F. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat. Nanotechnol. 2014, 9, 933. [Google Scholar] [CrossRef]
- Riesen, N.; Reynolds, T.; François, A.; Henderson, M.R.; Monro, T.M. Q-factor limits for far-field detection of whispering gallery modes in active microspheres. Opt. Express 2015, 23, 28896–28904. [Google Scholar] [CrossRef] [Green Version]
- François, A.; Riesen, N.; Ji, H.; Afshar, V.S.; Monro, T.M. Polymer based whispering gallery mode laser for biosensing applications. Appl. Phys. Lett. 2015, 106, 031104. [Google Scholar] [CrossRef]
- Wienhold, T.; Kraemmer, S.; Wondimu, S.; Siegle, T.; Bog, U.; Weinzierl, U.; Schmidt, S.; Becker, H.; Kalt, H.; Mappes, T. All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers. Lab Chip 2015, 15, 3800–3806. [Google Scholar] [CrossRef] [Green Version]
- Carrier, J.-R.; Boissinot, M.; Nì Allen, C. Dielectric resonating microspheres for biosensing: An optical approach to a biological problem. Am. J. Phys. 2014, 82, 510–520. [Google Scholar] [CrossRef]
- Huckabay, H.A.; Dunn, R.C. Whispering gallery mode imaging for the multiplexed detection of biomarkers. Sens. Actuators B Chem. 2011, 160, 1262–1267. [Google Scholar] [CrossRef]
- Holzner, G.; Kriel, F.H.; Priest, C. Pillar cuvettes: Capillary-filled, microliter quartz cuvettes with microscale path lengths for optical spectroscopy. Anal. Chem. 2015, 87, 4757–4764. [Google Scholar] [CrossRef] [PubMed]
- Kriel, F.H.; Priest, C. Influence of sample volume and solvent evaporation on absorbance spectroscopy in a microfluidic “pillar-cuvette”. Anal. Sci. 2016, 32, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Holzner, G.; Binder, C.; Kriel, F.H.; Priest, C. Directed Growth of Orthorhombic Crystals in a Micropillar Array. Langmuir 2017, 33, 1547–1551. [Google Scholar] [CrossRef]
- Orlowska, M.K.; Guan, B.; Sedev, R.; Morikawa, Y.; Suu, K.; Priest, C. Evaporation-Driven Flow in Micropillar Arrays: Transport Dynamics and Chemical Analysis under Varied Sample and Ambient Conditions. Anal. Chem. 2020, 24, 16043–16050. [Google Scholar] [CrossRef] [PubMed]
- Belay, A.; Assefa, G. Concentration, wavelength and temperature dependent refractive index of sugar solutions and methods of determination contents of sugar in soft drink beverages using laser lights. J. Laser Opt. Photonics 2018, 5, 4172. [Google Scholar]
- François, A.; Schwefel, H.; Monro, T.M. Using the lasing threshold in whispering gallery mode resonators for refractive index sensing. In Proceedings of the Laser Resonators, Microresonators, and Beam Control XX, San Francisco, CA, USA, 29 January–1 February 2018; p. 105180V. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riesen, N.; Peterkovic, Z.Q.; Guan, B.; François, A.; Lancaster, D.G.; Priest, C. Caged-Sphere Optofluidic Sensors: Whispering Gallery Resonators in Wicking Microfluidics. Sensors 2022, 22, 4135. https://doi.org/10.3390/s22114135
Riesen N, Peterkovic ZQ, Guan B, François A, Lancaster DG, Priest C. Caged-Sphere Optofluidic Sensors: Whispering Gallery Resonators in Wicking Microfluidics. Sensors. 2022; 22(11):4135. https://doi.org/10.3390/s22114135
Chicago/Turabian StyleRiesen, Nicolas, Zane Q. Peterkovic, Bin Guan, Alexandre François, David G. Lancaster, and Craig Priest. 2022. "Caged-Sphere Optofluidic Sensors: Whispering Gallery Resonators in Wicking Microfluidics" Sensors 22, no. 11: 4135. https://doi.org/10.3390/s22114135
APA StyleRiesen, N., Peterkovic, Z. Q., Guan, B., François, A., Lancaster, D. G., & Priest, C. (2022). Caged-Sphere Optofluidic Sensors: Whispering Gallery Resonators in Wicking Microfluidics. Sensors, 22(11), 4135. https://doi.org/10.3390/s22114135