Novel Probe for Thermally Controlled Raman Spectroscopy Using Online IR Sensing and Emissivity Measurements
Abstract
:1. Introduction
2. Experimental Set-Up
2.1. Emissivity Measurement
2.2. Temperature Control
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bersani, D.; Conti, C.; Matousek, P.; Pozzi, F.; Vandenabeele, P. Methodological Evolutions of Raman Spectroscopy in Art and Archaeology. Anal. Methods 2016, 8, 8395–8409. [Google Scholar] [CrossRef] [Green Version]
- Burgio, L.; Clark, R.J.H. Library of FT-Raman Spectra of Pigments, Minerals, Pigment Media and Varnishes, and Supplement to Existing Library of Raman Spectra of Pigments with Visible Excitation. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2001, 57, 1491–1521. [Google Scholar] [CrossRef]
- Siano, S.; Agresti, J.; Cacciari, I.; Ciofini, D.; Mascalchi, M.; Osticioli, I.; Mencaglia, A.A. Laser Cleaning in Conservation of Stone, Metal, and Painted Artifacts: State of the Art and New Insights on the Use of the Nd:YAG Lasers. Appl. Phys. A Mater. Sci. Process. 2012, 106, 419–446. [Google Scholar] [CrossRef]
- West, Y.D. Study of sample heating effects arising during laser Raman spectroscopy. Internet J. Vib. Spectrosc. 1996, 1, 5. [Google Scholar]
- Mencaglia, A.A.; Osticioli, I.; Siano, S. Development of an Efficient and Thermally Controlled Raman System for Fast and Safe Molecular Characterization of Paint Layers. Meas. J. Int. Meas. Confed. 2018, 118, 372–378. [Google Scholar] [CrossRef]
- Osticioli, I.; Mencaglia, A.A.; Siano, S. Temperature-Controlled Portable Raman Spectroscopy of Photothermally Sensitive Pigments. Sens. Actuators B Chem. 2017, 238, 772–778. [Google Scholar] [CrossRef]
- Ciofini, D.; Agresti, J.; Mencaglia, A.A.; Siano, S.; Osticioli, I. Temperature Sensing during Raman Spectroscopy of Lead White Films in Different Purity Grades and Boundary Conditions. Sens. Actuators B Chem. 2020, 325, 128958. [Google Scholar] [CrossRef]
- Kip, B.J.; Meier, R.J. Determination of the Local Temperature at a Sample during Raman Experiments Using Stokes and Anti-Stokes Raman Bands. Appl. Spectrosc. 1990, 44, 707–711. [Google Scholar] [CrossRef]
- Jorio, A.; Kasperczyk, M.; Clark, N.; Neu, E.; Maletinsky, P.; Vijayaraghavan, A.; Novotny, L. Stokes and Anti-Stokes Raman Spectra of the High-Energy C-C Stretching Modes in Graphene and Diamond. Phys. Status Solidi B Basic Res. 2015, 252, 2380–2384. [Google Scholar] [CrossRef] [Green Version]
- Barbillat, J.; Roussel, B.; da Silva, E. Use of Multi-Notch Filter for Simultaneous Recording of Stokes and Anti-Stokes Raman Signals Close to the Exciting Line. J. Raman Spectrosc. 1999, 30, 745–755. [Google Scholar] [CrossRef]
- Puppels, G.J.; Huizinga, A.; Krabbe, H.W.; de Boer, H.A.; Gijsbers, G.; de Mul, F.F.M. A High-Throughput Raman Notch Filter Set. Rev. Sci. Instrum. 1990, 61, 3709–3712. [Google Scholar] [CrossRef] [Green Version]
- Ibos, L.; Marchetti, M.; Boudenne, A.; Datcu, S.; Candau, Y.; Livet, J. Infrared Emissivity Measurement Device: Principle and Applications. Meas. Sci. Technol. 2006, 17, 2950–2956. [Google Scholar] [CrossRef]
- Taylor, S.; Wright, J.B.; Forrest, E.C.; Jared, B.; Koepke, J.; Beaman, J. Investigating Relationship between Surface Topography and Emissivity of Metallic Additively Manufactured Parts. Int. Commun. Heat Mass Transf. 2020, 115, 104614. [Google Scholar] [CrossRef]
- Daffara, C.; Parisotto, S.; Mariotti, P.I. Mid-Infrared Thermal Imaging for an Effective Mapping of Surface Materials and Sub-Surface Detachments in Mural Paintings: Integration of Thermography and Thermal Quasi-Reflectography. In Proceedings of the Optics for Arts, Architecture, and Archaeology V, Munich, Germany, 30 June 2015; SPIE: Bellingham, WA, USA, 2015; p. 9527. [Google Scholar] [CrossRef]
- Giulietti, D.; Gozzini, A.; Lucchesi, M.; Stampacchia, R. A Calorimetric Technique for Measuring Total Emissivity of Solid Materials and Coatings at Low Temperatures. J. Phys. D Appl. Phys. 1979, 12, 2027–2036. [Google Scholar] [CrossRef]
- Taylor, R.E.; Kimbrough, W.D.; Powell, R.W. Thermophysical properties of tantalum, tungsten, and tantalum-10 wt. per cent tungsten at high temperatures. J. Less Common Met. 1971, 24, 369–382. [Google Scholar] [CrossRef]
- Siroux, M.; Tang-Kwor, E.; Matteï, S. A periodic technique for emissivity measurements of insulating materials at moderate temperature. Meas. Sci. Technol. 1998, 9, 1956–1962. [Google Scholar] [CrossRef]
- Especel, D.; Matteï, S. Total Emissivity Measurements without Use of an Absolute Reference. Infrared Phys. Technol. 1996, 37, 777–784. [Google Scholar] [CrossRef]
- Rakrueangdet, K.; Nunak, N.; Suesut, T.; Sritham, E. Emissivity Measurements of Reflective Materials using Infrared Thermography. In Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS), Hong Kong, China, 16–18 March 2016; pp. 372–375. [Google Scholar]
- López, G.; Basterra, L.A.; Acuña, L.; Casado, M. Determination of the Emissivity of Wood for Inspection by Infrared Thermography. J. Nondestruct. Eval. 2013, 32, 172–176. [Google Scholar] [CrossRef]
- Marinetti, S.; Cesaratto, P.G. Emissivity Estimation for Accurate Quantitative Thermography. NDT E Int. 2012, 51, 127–134. [Google Scholar] [CrossRef]
- Honnerová, P.; Martan, J.; Veselý, Z.; Honner, M. Method for Emissivity Measurement of Semitransparent Coatings at Ambient Temperature. Sci. Rep. 2017, 7, 1386. [Google Scholar] [CrossRef] [Green Version]
- Bramson, M.A. Infrared Radiation: A Handbook for Applications; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Table of Total Emissivity. Available online: http://www.cn.omega.com/temperature/Z/pdf/z088-089.pdf (accessed on 28 March 2022).
- Öhman, C. Emittance measurements using AGEMA E-Box. Techical Report 1999. [Google Scholar]
- Paljak, I.; Pettersson, B. Thermography of Buildings; Swedish Building Research Institute: Stockholm, Sweden, 1972. [Google Scholar]
- Barreira, E.; Bauer, E.; Mustelier, N.; Freitas, V. Measurement of materials emissivity—Influence of the procedure. In Proceedings of the AITA—13th International Workshop on Advanced Infrared Technology and Applications 2015, Turin, Italy, 29 September–2 October 2015; pp. 242–245. [Google Scholar]
- Siano, S.; Osticioli, I.; Pavia, A.; Ciofini, D. Overpaint Removal from Easel Paintings Using an LQS Nd:YAG Laser: The First Validation Study. Stud. Conserv. 2015, 60, S49–S57. [Google Scholar] [CrossRef]
- Marchettini, N.; Atrei, A.; Benetti, F.; Proietti, N.; di Tullio, V.; Mascalchi, M.; Osticioli, I.; Siano, S.; Memmi, I.T. Non-Destructive Characterisation of Fourteenth Century Painting by Means of Molecular Spectroscopy and Unilateral NMR. Surf. Eng. 2013, 29, 153–158. [Google Scholar] [CrossRef]
- Emissivity Correction for Infrared Radiometer Sensors. Available online: http://www.apogeeinstruments.com/emissivity-correction-for-infrared-radiometer-sensors/ (accessed on 28 March 2022).
- Keune, K.; Boon, J.J. Analytical Imaging Studies Clarifying the Process of the Darkening of Vermilion in Paintings. Anal. Chem. 2005, 77, 4742–4750. [Google Scholar] [CrossRef]
- Philippidis, A.; Mikallou, A.; Anglos, D. Determining Optimum Irradiation Conditions for the Analysis of Vermilion by Raman Spectroscopy. Eur. Phys. J. Plus 2021, 136, 1194. [Google Scholar] [CrossRef]
- Moretti, G.; Gervais, C. Raman Spectroscopy of the Photosensitive Pigment Prussian Blue. J. Raman Spectrosc. 2018, 49, 1198–1204. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; John Wiley & Sons: Hoboken, NJ, USA, 2008; p. 149. [Google Scholar]
- Ciofini, D.; Osticioli, I.; Pavia, A.; Siano, S. Removal of Overpaintings from Easel Paintings Using LQS Nd:YAG Laser. Appl. Phys. A Mater. Sci. Process. 2014, 117, 341–346. [Google Scholar] [CrossRef]
Material | εT | εR = 1 − R | εref |
---|---|---|---|
Al, polished | 0.04 | 0.04 | 0.04–0.06 [23] |
Cu, burnished | 0.05 | 0.05 | 0.07 [23] |
Pb, shiny | 0.07 | 0.13 | 0.08 [23] |
Fe, unoxidized | 0.1 | 0.05 | 0.05 [24] |
AISI 316 | 0.17 | 0.16 | 0.14 [25] |
Pb, rough | 0.51 | 0.49 | 0.43 [24] |
Cu, oxidized | 0.71 | 0.70 | 0.60–0.70 [23] |
Plywood | 0.76 | 0.88 | 0.83 [26] |
Gypsum | 0.87 | 0.92 | 0.80–0.90 [23] |
Glass, smooth | 0.88 | 0.89 | 0.92–0.94 [24] |
White marble | 0.89 | 0.93 | 0.95 [24] |
White paper | 0.90 | 0.91 | 0.70–0.90 [23] |
Black tape | 0.92 | 0.93 | 0.90 [27] |
Limestone | 0.97 | 0.97 | 0.88–0.95 [24] |
Pigment | εT | εR = 1 − R |
---|---|---|
Cinnabar | 0.55 | 0.69 |
Massicot | 0.63 | 0.53 |
Pb red | 0.67 | 0.76 |
Cd yellow | 0.79 | 0.90 |
Co blue | 0.80 | 0.83 |
Cr green | 0.84 | 0.86 |
Ti white | 0.87 | 0.90 |
Zn white | 0.84 | 0.88 |
Paint layer | ||
Linseed oil | 0.88 | 0.96 |
Cinnabar | 0.85 | 0.83 |
Pb red | 0.93 | 0.93 |
Cd yellow | 0.87 | 0.91 |
Co blue | 0.92 | 0.97 |
Cr green | 0.90 | 0.96 |
Ti white | 0.90 | 0.96 |
Zn white | 0.89 | 0.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calvagna, C.; Mencaglia, A.A.; Osticioli, I.; Ciofini, D.; Siano, S. Novel Probe for Thermally Controlled Raman Spectroscopy Using Online IR Sensing and Emissivity Measurements. Sensors 2022, 22, 2680. https://doi.org/10.3390/s22072680
Calvagna C, Mencaglia AA, Osticioli I, Ciofini D, Siano S. Novel Probe for Thermally Controlled Raman Spectroscopy Using Online IR Sensing and Emissivity Measurements. Sensors. 2022; 22(7):2680. https://doi.org/10.3390/s22072680
Chicago/Turabian StyleCalvagna, Chiara, Andrea Azelio Mencaglia, Iacopo Osticioli, Daniele Ciofini, and Salvatore Siano. 2022. "Novel Probe for Thermally Controlled Raman Spectroscopy Using Online IR Sensing and Emissivity Measurements" Sensors 22, no. 7: 2680. https://doi.org/10.3390/s22072680
APA StyleCalvagna, C., Mencaglia, A. A., Osticioli, I., Ciofini, D., & Siano, S. (2022). Novel Probe for Thermally Controlled Raman Spectroscopy Using Online IR Sensing and Emissivity Measurements. Sensors, 22(7), 2680. https://doi.org/10.3390/s22072680