# An Experimental Urban Case Study with Various Data Sources and a Model for Traffic Estimation

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Related Works

## 3. Methodology for Representing Urban Traffic States

## 4. Travel Time Estimation Methodology

#### 4.1. Feature Engineering

- ${S}_{5}$: 5% random data sample from e.g., CAVs;
- $\overline{h}$: Average headway (s) when a traffic light is green;
- ${q}_{\mathrm{I}}$: Progressed flow at an intersection (veh/h);
- $\overline{o}$: Average occupancy of LDs (%);
- $\overline{{p}_{\mathrm{c}}}$: Average red/green phase count (-).

#### 4.2. Mlr Model Definition

#### 4.3. Baseline Model Specification

#### 4.4. Final Model Specification

#### 4.5. Performance Metrics

## 5. Description of Experimental Campaign and Data Sources

#### 5.1. Experimental Campaign with Video Cameras

#### 5.2. Data Sources for Sensor Assessment

## 6. Results

#### 6.1. Traffic State Representation and Sensor-Based Assessment

#### 6.2. Travel Time Estimation Assessment

## 7. Discussion

#### 7.1. Traffic States–Traffic Flow

#### 7.2. Traffic States–Travel Times

#### 7.3. Travel Time Estimation Models

## 8. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Kouvelas, A.; Chow, A.; Gonzales, E.; Yildirimoglu, M.; Carlson, R.C. Emerging Information and Communication Technologies for Traffic Estimation and Control. J. Adv. Transp.
**2018**, 2018, 8498054. [Google Scholar] [CrossRef] - Bachmann, C.; Roorda, M.J.; Abdulhai, B.; Moshiri, B. Fusing a Bluetooth Traffic Monitoring System With Loop Detector Data for Improved Freeway Traffic Speed Estimation. J. Intell. Transp. Syst.
**2013**, 17, 152–164. [Google Scholar] [CrossRef] - Zheng, F. Modelling Urban Travel Times. Ph.D. Thesis, TRAIL Research School, Delft, The Netherlands, 12 July 2011. [Google Scholar]
- Genser, A.; Kouvelas, A. Optimum route guidance in multi-region networks. A linear approach. In Proceedings of the 99th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 12–16 January 2020. [Google Scholar] [CrossRef]
- Genser, A.; Kouvelas, A. Dynamic optimal congestion pricing in multi-region urban networks by application of a Multi-Layer-Neural network. Transp. Res. Part C Emerg. Technol.
**2022**, 134, 103485. [Google Scholar] [CrossRef] - Genser, A.; Ambühl, L.; Yang, K.; Menendez, M.; Kouvelas, A. Time-to-Green predictions: A framework to enhance SPaT messages using machine learning. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 20–23 September 2020; pp. 1–6. [Google Scholar]
- Chavoshi, K.; Genser, A.; Kouvelas, A. A Pairing Algorithm for Conflict-Free Crossings of Automated Vehicles at Lightless Intersections. Electronics
**2021**, 10, 1702. [Google Scholar] [CrossRef] - Yildirimoglu, M.; Geroliminis, N. Experienced travel time prediction for congested freeways. Transp. Res. Part B Methodol.
**2013**, 53, 45–63. [Google Scholar] [CrossRef][Green Version] - Haghani, A.; Hamedi, M.; Sadabadi, K.F.; Young, S.; Tarnoff, P. Data Collection of Freeway Travel Time Ground Truth with Bluetooth Sensors. Transp. Res. Rec.
**2010**, 2160, 60–68. [Google Scholar] [CrossRef] - Sharifi, E.; Hamedi, M.; Haghani, A.; Sadrsadat, H. Analysis of Vehicle Detection Rate for Bluetooth Traffic Sensors: A Case Study in Maryland and Delaware. In Proceedings of the 18th ITS World Congress, Orlando, FL, USA, 16–20 October 2011. [Google Scholar]
- Erkan, I.; Hastemoglu, H. Bluetooth as a traffic sensor for stream travel time estimation under Bogazici Bosporus conditions in Turkey. J. Mod. Transp.
**2016**, 24, 207–214. [Google Scholar] [CrossRef][Green Version] - Barcelö, J.; Montero, L.; Marqués, L.; Carmona, C. Travel Time Forecasting and Dynamic Origin-Destination Estimation for Freeways Based on Bluetooth Traffic Monitoring. Transp. Res. Rec.
**2010**, 2175, 19–27. [Google Scholar] [CrossRef][Green Version] - Barceló, J.; Montero, L.; Bullejos, M.; Serch, O.; Carmona, C. A Kalman Filter Approach for the Estimation of Time Dependent OD Matrices Exploiting Bluetooth Traffic Data Collection. In Proceedings of the 91st Transportation Research Board 2012 Annual Meeting, Washington, DC, USA, 22–26 January 2012; pp. 1–16. [Google Scholar]
- Elliott, T.; Lumley, T. Modelling the travel time of transit vehicles in real-time through a GTFS-based road network using GPS vehicle locations. Aust. N. Z. J. Stat.
**2020**, 62, 153–167. [Google Scholar] [CrossRef] - Abedi, N.; Bhaskar, A.; Chung, E.; Miska, M. Assessment of antenna characteristic effects on pedestrian and cyclists travel-time estimation based on Bluetooth and WiFi MAC addresses. Transp. Res. Part C Emerg. Technol.
**2015**, 60, 124–141. [Google Scholar] [CrossRef] - Shen, L. Practical approach for travel time estimation from point traffic detector data. J. Adv. Transp.
**2013**, 47, 526–535. [Google Scholar] [CrossRef] - Yeon, J.; Elefteriadou, L.; Lawphongpanich, S. Travel time estimation on a freeway using Discrete Time Markov Chains. Transp. Res. Part B Methodol.
**2008**, 42, 325–338. [Google Scholar] [CrossRef] - Bhaskar, A.; Chung, E.; Dumont, A.G. Fusing Loop Detector and Probe Vehicle Data to Estimate Travel Time Statistics on Signalized Urban Networks. Comput.-Aided Civ. Infrastruct. Eng.
**2011**, 26, 433–450. [Google Scholar] [CrossRef][Green Version] - Bock, J.; Krajewski, R.; Moers, T.; Runde, S.; Vater, L.; Eckstein, L. The inD Dataset: A Drone Dataset of Naturalistic Road User Trajectories at German Intersections. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13 November 2020; pp. 1929–1934. [Google Scholar]
- Lyman, K.; Bertini, R.L. Using Travel Time Reliability Measures to Improve Regional Transportation Planning and Operations. Transp. Res. Rec.
**2008**, 2046, 1–10. [Google Scholar] [CrossRef][Green Version] - Chen, Z.; Fan, W. Data analytics approach for travel time reliability pattern analysis and prediction. J. Mod. Transp.
**2019**, 27, 250–265. [Google Scholar] [CrossRef][Green Version] - Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Noise Reduction in Speech Processing; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Kim, S.; Kim, H. A new metric of absolute percentage error for intermittent demand forecasts. Int. J. Forecast.
**2016**, 32, 669–679. [Google Scholar] [CrossRef] - Branston, D.; van Zuylen, H. The estimation of saturation flow, effective green time and passenger car equivalents at traffic signals by multiple linear regression. Transp. Res.
**1978**, 12, 47–53. [Google Scholar] [CrossRef] - TomTom International, BV. Zurich Traffic Report. Available online: https://www.tomtom.com/en_gb/traffic-index/zurich-traffic (accessed on 4 July 2021).
- Silva, S.M.; Jung, C.R. License plate detection and recognition in unconstrained scenarios. In Proceedings of the 2018 European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 580–596. [Google Scholar]
- Gade, R.; Moeslund, T.B. Thermal cameras and applications: A survey. Mach. Vis. Appl.
**2014**, 25, 245–262. [Google Scholar] [CrossRef][Green Version] - Fu, T.; Stipancic, J.; Zangenehpour, S.; Miranda-Moreno, L.; Saunier, N. Automatic traffic data collection under varying lighting and temperature conditions in multimodal environments: Thermal versus visible spectrum video-based systems. J. Adv. Transp.
**2017**, 2017, 5142732. [Google Scholar] [CrossRef] - Ding, F.; Chen, X.; He, S.; Shou, G.; Zhang, Z.; Zhou, Y. Evaluation of a wi-fi signal based system for freeway traffic states monitoring: An exploratory field test. Sensors
**2019**, 19, 409. [Google Scholar] [CrossRef] [PubMed][Green Version] - Kwong, K.; Kavaler, R.; Rajagopal, R.; Varaiya, P. Arterial travel time estimation based on vehicle re-identification using wireless magnetic sensors. Transp. Res. Part C Emerg. Technol.
**2009**, 17, 586–606. [Google Scholar] [CrossRef] - Bakhtan, M.A.H.; Abdullah, M.; Rahman, A.A. A review on License Plate Recognition system algorithms. In Proceedings of the 2016 International Conference on Information and Communication Technology (ICICTM), Kuala Lumpur, Malaysia, 16–17 May 2016; pp. 84–89. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Google Developers. Distance Matrix API—Documentation. Available online: https://developers.google.com/maps/documentation/distance-matrix/overview (accessed on 23 July 2021).

**Figure 1.**Defined quantities for derivation of traffic flow and travel time: (

**a**) measurement spots to derive traffic flow ${q}_{s}\left(t\right)$ for all $s=\{1,2,3,4,5,6\}$, (

**b**) pre-defined routes $r=\{1,2,3,4,5,6\}$ to derive all travel times ${\tau}_{r}\left(t\right)$.

**Figure 2.**Test area (in red), Zurich Switzerland. The highlighted network in gray indicates the road segments where data is collected and processed. The traffic light symbols indicate the five implemented traffic control systems.

**Figure 3.**Set-up for empirical measurements: (

**a**) placement and distance from the intersection center (in meters) of six cameras capturing traversing traffic (C01–C06), (

**b**) used camera set-up with HD camera and tripod.

**Figure 4.**Thermal camera set-up: (

**a**) four mounted thermal cameras and distances from the intersection center (in meters) capturing traversing traffic (T1–T4), (

**b**) example of an overhead mounted thermal camera.

**Figure 5.**Flow evaluation of (

**a**) ${q}_{1}\left(t\right)$ and (

**b**) ${q}_{2}\left(t\right)$ at WB from the ground-truth measurement, the ALPR, and the thermal camera T2; (

**c**) shows the matching rate of the ALPR algorithm for both derived flows.

**Figure 6.**Flow evaluation (

**a**) ${q}_{3}\left(t\right)$ and (

**b**) ${q}_{4}\left(t\right)$ at EB from the ground-truth measurement, the ALPR, and the thermal camera T3; (

**c**) shows the matching rate of the ALPR algorithm for both derived flows.

**Figure 7.**Flow evaluation (

**a**) ${q}_{5}\left(t\right)$ and (

**b**) ${q}_{6}\left(t\right)$ at NB from the ground-truth measurement, the ALPR, and the thermal camera T4 and T1; (

**c**) shows the matching rate of the ALPR algorithm for both derived flows.

**Figure 8.**Travel time evaluation for (

**a**) ${\tau}_{1}\left(t\right)$, (

**b**) ${\tau}_{3}\left(t\right)$, (

**c**) ${\tau}_{4}\left(t\right)$ and (

**d**) ${\tau}_{5}\left(t\right)$ with the ground-truth measurement, the ALPR, the set of thermal cameras, and the Google Distance Matrix API data set.

**Figure 9.**10 min WMA travel times estimates of the baseline model, estimation model, compared to the 5% data sample and the ground-truth on ${r}_{3}$.

**Table 1.**Correlation coefficient $\rho $ and MAPE of ALPR (abbreviation LP), thermal camera data (abbreviation TC) and the 10 min MA Ground Truth flow data.

${\mathit{q}}_{1}\left(\mathit{t}\right)$ | ${\mathit{q}}_{2}\left(\mathit{t}\right)$ | ${\mathit{q}}_{3}\left(\mathit{t}\right)$ | ${\mathit{q}}_{4}\left(\mathit{t}\right)$ | ${\mathit{q}}_{5}\left(\mathit{t}\right)$ | ${\mathit{q}}_{6}\left(\mathit{t}\right)$ | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|

LP | TC | LP | TC | LP | TC | LP | TC | LP | TC | LP | TC | |

$\rho $ [-] | 0.81 | 0.91 | 0.61 | 0.93 | 0.58 | 0.94 | 0.73 | 0.00 | 0.58 | 0.94 | 0.76 | 0.99 |

$\mathrm{MAPE}$ [%] | 15.54 | 4.83 | 12.64 | 3.33 | 17.20 | 3.86 | 9.17 | 92.45 | 17.20 | 3.86 | 24.42 | 1.22 |

**Table 2.**Correlation coefficient $\rho $ and MAPE of ALPR (abbreviation LP), thermal camera data (abbreviation TC), Google Distance Matrix API data (abbreviation G) and the 10 min MA ground truth flow data. Note that a correlation denoted as NA=not available means that the time series standard deviation is zero.

${\mathit{\tau}}_{1}\left(\mathit{t}\right)$ | ${\mathit{\tau}}_{3}\left(\mathit{t}\right)$ | ${\mathit{\tau}}_{4}\left(\mathit{t}\right)$ | ${\mathit{\tau}}_{5}\left(\mathit{t}\right)$ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|

LP | TC | G | LP | TC | G | LP | TC | G | LP | TC | G | |

$\rho $ [-] | 0.99 | 0.71 | 0.27 | 0.84 | −0.11 | NA | 0.85 | −0.13 | NA | 0.99 | 0.72 | 0.33 |

$\mathrm{MAPE}$ [%] | 3.14 | 58.07 | 25.95 | 8.04 | 18.36 | 50.64 | 7.51 | 26.76 | 73.38 | 2.73 | 20.60 | 45.49 |

**Table 3.**Adjusted R-square values of the model performance on the training data. MAPE denotes the comparison of travel times estimates (baseline model and estimation model), and 5% sample of ${r}_{3}$.

${\mathit{r}}_{3}$ | $\mathbf{adj}{\mathit{R}}^{2}$ [-] | MAPE [%] |
---|---|---|

5% sample | - | 18.10 |

Base Model | 0.40 | 11.62 |

Final Model | 0.81 | 10.92 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Genser, A.; Hautle, N.; Makridis, M.; Kouvelas, A.
An Experimental Urban Case Study with Various Data Sources and a Model for Traffic Estimation. *Sensors* **2022**, *22*, 144.
https://doi.org/10.3390/s22010144

**AMA Style**

Genser A, Hautle N, Makridis M, Kouvelas A.
An Experimental Urban Case Study with Various Data Sources and a Model for Traffic Estimation. *Sensors*. 2022; 22(1):144.
https://doi.org/10.3390/s22010144

**Chicago/Turabian Style**

Genser, Alexander, Noel Hautle, Michail Makridis, and Anastasios Kouvelas.
2022. "An Experimental Urban Case Study with Various Data Sources and a Model for Traffic Estimation" *Sensors* 22, no. 1: 144.
https://doi.org/10.3390/s22010144