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Abstract: A reliable estimation of the traffic state in a network is essential, as it is the input of any
traffic management strategy. The idea of using the same type of sensors along large networks is not
feasible; as a result, data fusion from different sources for the same location should be performed.
However, the problem of estimating the traffic state alongside combining input data from multiple
sensors is complex for several reasons, such as variable specifications per sensor type, different noise
levels, and heterogeneous data inputs. To assess sensor accuracy and propose a fusion methodology,
we organized a video measurement campaign in an urban test area in Zurich, Switzerland. The
work focuses on capturing traffic conditions regarding traffic flows and travel times. The video
measurements are processed (a) manually for ground truth and (b) with an algorithm for license
plate recognition. Additional processing of data from established thermal imaging cameras and the
Google Distance Matrix allows for evaluating the various sensors’ accuracy and robustness. Finally,
we propose an estimation baseline MLR (multiple linear regression) model (5% of ground truth) that
is compared to a final MLR model that fuses the 5% sample with conventional loop detector and
traffic signal data. The comparison results with the ground truth demonstrate the efficiency and
robustness of the proposed assessment and estimation methodology.

Keywords: urban traffic state; travel time estimation; traffic management; traffic flow; license plate
detection; empirical measurements; multiple linear regression

1. Introduction

An accurate derivation of fundamental traffic state variables is key for sophisticated
traffic management. Urban areas especially suffer from congestion due to a higher popula-
tion density, traffic lights and elevated mobility demand. In addition, other variables, traffic
flow information at specific locations in the network and travel times between an origin and
a destination are of great importance for traffic operators. In particular, travel times allow
for the derivation of the network’s current level of service (LoS) and influence the network
user’s mode and route choice. Consequently, accurate sensor technology is needed to detect
vehicles when traveling through a network with a low error rate where traffic variables
satisfy accuracy requirements [1]. However, urban areas are sometimes sparsely equipped
with sensors, which negatively affects accuracy and increases the noise level of the results.
In addition, a variety of sensor technologies used in urban environments are only suitable
for deriving particular traffic variables and also differ in data resolution. For example
traditional sensor technologies such as loop detectors (LD) are still one of the widely used
measurement devices due to reliability and flexibility in design [2]. Although, LDs have
been shown as a promising data source for traffic flow, theoretical assumptions for a unique
vehicle identification are needed and a re-identification is not possible. In contrast, new
technologies such as video/thermal cameras and Bluetooth/WiFi sensors not only enable
accurate derivation of traffic flow, but also provide good results in measuring travel time,
since unique vehicle identification based on MAC address recognition is possible.
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Although numerous studies have evaluated and estimated travel times on freeways
and in urban areas, only few studies have compared emerging sensor technologies to
an empirical ground-truth measurement. In addition, the question still remains on how
traditional sensor data can help with travel time estimation in terms of performance
improvement. Therefore, this work focuses on providing traffic state representation in
terms of traffic flow and travel time estimation within an urban network. We run a
multi-sensor campaign in Zurich, Switzerland, including video measurements from the
particular area and investigate the time series derivation of traffic flow and travel times.
Consequently, we compare the following data sources: (a) thermal camera sensors data
that are equipped with a WiFi interface (b) processed video data with an automated license
plate recognition (ALPR) algorithm and (c) Google Distance Matrix data from the particular
area. For comparative results, the video data serves for the exact determination of traffic
flow and travel times, i.e., a ground-truth data set. Besides the assessment of the different
data sets, we propose a simple yet efficient multiple linear regression (MLR) model to
estimate travel times in a future environment with connected and automated vehicles
(CAV). We create a baseline scenario with a random 5% sample of the ground-truth data
that emulates data from moving sensors (e.g., from CAVs). Finally, a model that fuses
moving sensor data with traditional LD and traffic signal data is proposed. The estimation
results are compared to the baseline and ground-truth data.

The paper includes the following contributions: (a) an experimental campaign with
multiple sensor data (thermal video, LD and traffic signal, and Google Distance Matrix);
(b) sensor-based analysis for traffic state estimation in terms of traffic flow and travel times;
(c) accuracy assessment of the derived time series for all sensors; (d) travel time estimation
for specific origin-destinations by fusing static LD and traffic signal data with (emulated)
CAV information and comparison to a baseline scenario.

The remainder of the paper is as follows: The next section highlights relevant previous
works in the field of traffic flow/travel time assessment and estimation. Following this,
we introduce the data processing methodology and the utilized performance metrics.
The travel time estimation models with used performance metrics are introduced in the
subsequent section. A description of the empirical experiment and the collected data sets
is given in the succeeding section. This includes a description of the area, the performed
video measurement, and a description of the other sensor sources, i.e., thermal cameras,
post-processed video data with ALPR, Google Distance Matrix data, and derivation of the
ground-truth data set. Afterwards, the results are presented and discussed and the paper
closes with a concluding section and an outline for future work.

2. Related Works

As a consequence of rising mobility demand, freeways and urban areas are continu-
ously suffering from traffic congestion. This results in smaller network throughput, lower
average speeds on network links, and consequently, higher travel times [3]. The traffic
management domain offers several tools that influence route choice [4] and mode choice
(e.g., congestion pricing [5]), or traffic demand (e.g. user’s departure time) to tackle rising
congestion problems. Nevertheless, the implementation of sophisticated traffic manage-
ment policies requires reliable input data, such as traffic flow and travel time dynamic
estimates. Besides, travel time estimation in urban networks is particularly challenging
because of the dynamic demand, low speeds and signaling. Efforts towards accurately
predicting time-to-green [6] can certainly help but until high penetration levels of AVs [7]
are achieved, traffic signaling remains a challenge for accurate travel time estimation.

In particular, travel times can be measured directly by identifying a vehicle at two
specific points in space with a corresponding timestamp. This is achieved with camera data
and the application of ALPR algorithms that allows matching license plates or probe vehicle
data. In addition, novel sensors with Bluetooth or WiFi interfaces can detect a unique MAC
address of devices such as, e.g., a mobile phone [8]. An evaluation of Bluetooth sensors as
a potential ground-truth data source was performed in [9]. The study compares Bluetooth
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sensor data collected on a freeway to vehicle probe data, and the penetration rate of the
Bluetooth system is approximated with LD data. Results underline that Bluetooth sensors
are a promising data source to measure accurate travel times. Nevertheless, the quality
of Bluetooth sensor data heavily depends on the penetration in the system. Hence, the
statement that the new sensors can be utilized as ground-truth data is questionable with a
low sample rate. As [10] shows, the penetration rate of Bluetooth systems can be low and
hence only detect a fraction of vehicles of an observed network. The study reports that
the aggregated penetration rate of several observed segments in Delaware and Maryland,
USA, fluctuates around 4%. For the derivation of the ground-truth data set, LDs and
microwave sensors are utilized; i.e., no actual empirical measurement of the traffic flow or
travel time was performed. The results are supported by another study in Turkey, where
a penetration rate of 5% was found [11]. Another field test was conducted by [12] on a
freeway in Barcelona, Spain. The work utilizes Bluetooth sensors to determine travel times
and then designs a Kalman filter that allows the estimation of origin-destination pairs on
freeways. The authors extend their work in [13] to urban networks with route choice.

Alongside the determination of travel times for vehicles on freeways and urban
areas, the quantities are also from great interest for public transportation, non-motorized
transport modes, i.e., cyclists and pedestrians. [14] develops a framework to estimate the
travel times of buses in Auckland, New Zealand. The framework allows for calculating a
network’s traffic state, i.e., congested or not congested with positioning data. Two models
are combined, where the first model estimates travel times followed by the traffic state
computed by the second model. [15] shows travel time estimation for pedestrian’s and
cyclist’s travel times based on Bluetooth and WiFi MAC addresses. Validation is performed
with ground-truth data.

Contrary, travel times can also be derived indirectly with traditional sensors data.
Loop detectors allow the direct determination of traffic flow and an approximation of speed,
which can then be used to calculate travel times. A prediction of travel times based on LD
data in California is proposed by [8]. The processed data serves as input to a prediction
framework, including a bottleneck identification algorithm, traffic regime clustering, a
stochastic congestion map for clustered data, and an algorithm for a congestion search
algorithm. A more practical approach of travel time estimation was followed by [16]
with LD data. The work addresses data gaps (spatially and temporally) by applying
an Exponential Moving Average (EMA) to improve the estimates. Additionally, [16]
transforms the calculated Time-Mean-Speed (TMS) to Space-mean-speed (SMS) by fitting a
linear regression; the transformation improves the estimates further. However, the authors
do not provide details about their models and only utilize simulated data from Aimsun
(i.e., no ground-truth data) to validate their approach. The study in [17] utilizes LD data
to calculate speed, traffic volume, and the LD’s occupancy. The acquired data serves to
validate a developed freeway travel time estimation model with Discrete-Time Markov
Chains. The model shows promising results with travel time deviations lower than 3% from
the LD data. Nevertheless, a comparison to an actual empirical ground-truth measurement
is not provided.

Besides the aforementioned works, research also focuses on the fusion of different
data sources to achieve accurate travel time estimates, e.g., LD and probe vehicle data [18]
or drone data to derive naturalistic vehicle trajectories [19]. In addition, the travel time
reliability is highlighted by several kinds of research works as an essential measure to
evaluate not only empirical measurements but also estimated /predicted outputs (see, [20]
or [21]).

3. Methodology for Representing Urban Traffic States

This section presents the methodology to infer traffic flow and travel times from the
available data sets throughout this work. In addition, we introduce performance metrics
that are used to evaluate the derived time series.
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Let us consider a four-leg intersection system depicted in Figure 1. Note that one
intersection approach located south is assumed to not provide any sensors. Hence, this
approach is not considered for deriving traffic flow and travel times. For the remaining
approaches, the fundamental quantities traffic flow g;(t) of pre-defined points s in space
and travel time 7,(¢) for a pre-defined route r are defined. Figure 1 depicts all spots s
and routes r. Note again that for the approach from the south no elements of s and r are
available. Since no sensors are deployed on this road section, an in-detail investigation
is not possible. Consequently, six measurement spots to derive a set of traffic flow F =
{q1(t),q2(t),q3(t),q4(t),q5(t), q6(t) } and a set of six routes R = {rq,72,73,74,15,1¢} for
derivation of the set 7 = {11 (t), =2 (t), 13(t), Ta(t), T5(t), 76 () }, denoting the travel times
are presented throughout this work.

m

qg6(t)

T2, T2

(@) (b)

Figure 1. Defined quantities for derivation of traffic flow and travel time: (a) measurement spots to
derive traffic flow gs(t) for all s = {1,2,3,4,5,6}, (b) pre-defined routes r = {1,2,3,4,5,6} to derive
all travel times T (t).

First, we derive traffic flow in (veh/h) from a given data source (e.g., LD, traffic signal
or video data). Thus, we can define g5 () to derive a traffic flow time series as follows:

%(t) = T’ 1)

where 1 represents the vehicle count, and T represents the measurement interval, which is
constant for all sensor sources. Since the derived flow can show outliers or anomalies, a
moving average of the data is derived as follows:

1 0
gs(t) = K+l ‘Zk gs(t+1i), 2

where {;(t) is the averaged traffic flow time series for s and k the window size specifying
the data taken into account for the moving average of every sample of 7;(t). Note that
the defined window only considers historical data; this definition helps for real-time
applications, where no future values are available. If the number of available samples are
less than k no averaged sample is computed.

To derive the travel times, we again take a given data set and derive the quantity by
applying Equation (3). The time series of travel time 7,(t) for a route r is defined as follows:

1 N
Tr(t) = N 2 tvoutrr - tvinrr s (3)
v=1
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where t,, , denotes the timestamp t of a vehicle v entering the system and following a route
7. tyy.r denotes the timestamp v finished route 7, i.e, exits the system. To create the travel
time series, we average the number of vehilces v denote as N that travel r at t. To remove
outliers, the travel time series are post-processed. As T;(f) is dependent on the 75 (t), we
chose to compute the weighted moving average, where §;(t) represents the weight, i.e.,

1 0
T(t) = —— 7s(1) - T (t+1) . 4
#(1) k+1i:2—kq5() r(E+1) 4)
T,(t) represents the weighted moving average of ;.
For the sensor-based assessment, we utilize two common performance metrics to
compare the data sources (for traffic flow and travel times, respectively). First, the Pearson
correlation coefficient (PCC) is introduced as follows:

E(a,b)

p(a,b) = o ®)

where p(a,b) denotes the PCC between variables a and b; E(a,b) the cross-correlation
between a and b; 0; and o3, the variance of the variables, respectively. Thereby, a PCC of 1
indicates perfect postive correlation, -1 a perfect negative correlation, whereas a correlation
coefficient of 0 indicates no correlation. The closer PCC to 1, the higher the correlation
of the two variables [22]. Secondly, we use the mean absolute percentage error (MAPE),

defined as ;
MAPE = © )
=

Yi — Y

Yi

where y; are the actual observations of the ground truth, and #; is the derived traffic
quantities of a data source under evaluation [23].

, (6)

4. Travel Time Estimation Methodology

In order to evaluate the hypothesis for estimating the travel times of an origin-
destination pair in an urban area with multiple data sources, we design an MLR model
for estimation. The goal is to design a model that can be utilized for estimation on all
available routes. We want to showcase the performance differences between two models
align with the following assumptions, respectively: (a) utilization of moving sensor data
(e.g. CAVs) with a penetration rate of 5% (i.e. a 5% sample of accurate real-time information
is available) and (b) utilization of the 5% subset but also extracted features from LD and
traffic signal data. The two models are denoted as the baseline and final model in this
work. The design process therefore requires the processing of LD and signal data, and
extracting relevant features serving as model inputs (see Section 4.1). We then introduce
the basic definition of an MLR model, baseline model and final model in Sections 4.2-4.4,
respectively.

4.1. Feature Engineering

The first data set taken into account and serving as input to the MLR model is a
5% data sample available from emulated moving sensors (e.g., probe-vehicle data, or—
considering future transportation systems—CAVs that transmit, e.g., location or speed,
to a centralized processing unit). Note that in our experimental campaign introduced in
Section 5, these data are acquired by sampling a random 5% subset from the empirical
measurements. In addition, LD and traffic signal data from the intersections’ signal controls
within the investigation area are processed. A total of 48 different LDs and traffic signals
are considered to extract features and compile the following complete list of predictors:

*  S5: 5% random data sample from e.g., CAVs;

e I Average headway (s) when a traffic light is green;
e gp: Progressed flow at an intersection (veh/h);

*  0: Average occupancy of LDs (%);
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® Pt Average red/green phase count (-).

To perform the training and validation of the models, the data are split into a training
and test data set. A total of 70% of observations were used for training, and the last 30%
for testing. For the different routes, between 76 and 82 observations were available for the
training, and 33 to 35 observations to validate the estimation results (test data set).

4.2. Mlr Model Definition

An MLR model serves well to predict the response of a target variable; in our case, the
travel time of a sample s and a route r. By defining such a model, a functional relationship
is found that takes the explanatory variables as input and allows the estimation of travel
times. A mathematical formulation of an MLR model can be introduced as follows:

Trs = Bro+ Brixs1 + BraXsp + ...

7
+‘Br,pxS,p+Erls, VS € {1,...,T}, ( )

where ;s is the response or target variable, i.e., the travel time estimate for a route r
and sample s. All variables denoted as B and the corresponding subscript are regression
coefficients and determined during the training procedure. The intercept of the MLR
equation is denoted as B, ; B;1 to By, denote all the coefficients for r and a number of
p predictors. The predictors are deterministic variables and represent the input features
derived in Section 4.1; In (7) the variables are defined as x5 to x5 . The error term is
denoted by E, s and follows a Gaussian distribution and T denotes the estimation horizon.
The definition of the model is based on works such as [24]. The solution for ;s is found by
applying the ordinary least square method.

4.3. Baseline Model Specification

For evaluation, if data fusion with LD and traffic signal data improves the estimation
model, a baseline model is specified. Only with the 5% data sample as a predictor is an
MLR designed for all routes r as a baseline. This allows to compare the travel time estimates
7T of all r and select a baseline model for the area of investigation (the model providing the
lowest error). Consequently, we can redefine (7) with only one explanatory variable and
specify the baseline model as follows:

T2 = PPy + Br1Sss + ERe, Vs € {1,...,T}, ®)
Note that the superscript ‘b’ in (8) indicates the specification of the baseline model.

4.4. Final Model Specification

The final MLR model is determined by utilizing all the features presented in Section 4.1.
To determine the model with best performance for all the routes r, an iterative process of
predictor forward selection is performed to determine the lowest error (see the defined
performance metrics in Section 4.5). Consequently, we can redefine (8) and specify the final
model as follows:

log(ﬁf,s) = /3fr,0 + /5£,1 55,5 + /35,2 log(hs) + lafr,3‘11,s+

f = f = f ©)

+B;40s + By 5 log(pe,s) + E,s Vs € {1,...,T},
Note that (9) shows non-linear variable transformations by utilizing the log(-) function.
This methodological step is performed to change the regression relation and find the model
with the best performance. In addition, the response variable ?rf/s, i.e., the travel time for a
route is also transformed with log(-). The superscript f’ in (9) indicates the specification of
the final data fusion model.
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4.5. Performance Metrics

Two performance metrics are utilized to evaluate the performance of the baseline
and final determined MLR model. The coefficient of determination (R?) expresses the
percentage of the response variables’ total variation that is explainable by the predictor
variables. However, higher values of the R?> measure can occur when more predictor
variables are added to the model, leading to a distorted comparison. To account for this
problem, the adjusted R? (adjR?) is introduced. adjR? uses a penalty term that is dependent
on the number of predictor variables (p). Additionally, the MAPE is utilized again as a
measure to evaluate the travel time estimates of the model (i.e., the estimation compared to
the test data set).

5. Description of Experimental Campaign and Data Sources

As this study focuses on traffic state estimation via traffic flow and travel time deriva-
tion in an urban environment, a small area is selected that reflects the quantities variance
but does not allow for complex traffic movements, e.g., a high number of possible routes.
The particular area is located in Zurich, Switzerland, in the northern part of the city. The
experimental campaign to compile data from multiple sensors and the video data is de-
scribed in the following section; similarly, the various data sources utilized here for quality
assessment are also introduced.

5.1. Experimental Campaign with Video Cameras

In Figure 2, the area under investigation is depicted in red. Additionally, the road
sections that are investigated with different data sources are highlighted in gray. The
approach starting in the west named Binzmiihlstrasse is denoted as west bound (WB); the
east approach called Hagenholzstrasse as east bound (EB); while the approach from the
north named Thurgauerstrasse is given as north bound (NB). The transportation network
in the red area primarily serves individual motorized transport and is regulated with five
traffic control systems. A bus line operates on the west-east axis (WB to EB) and vice versa
(EB to WB). Bicycle traffic is managed with cycle paths implemented on the road or with
separated cycling infrastructure.

STeCheZlir,
i ; :
€h-Norg, . N crati

> Glattpark
> (Opfikon)

Seebach

Steinacker

e
Pl

Haqenho

! A Wallisellen

Wallisellenstr

8
E Ziirich
LB

h‘“!r»
Strag Graifenseesirasse

Oerlikon
0 015 03 0,6 0,9 1,2

—-—— ilometer

Landestopografie, swisstopo (5704003247), HERE,
DIDok; Systéme d'information du territoire a Genéve, Q4

Figure 2. Test area (in red), Zurich Switzerland. The highlighted network in gray indicates the
road segments where data is collected and processed. The traffic light symbols indicate the five
implemented traffic control systems.
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Although Zurich shows a good coverage of various sensors over the whole city, the
area is selected for the following reasons: (a) the deployed sensors are spatially close to
each other. Thus, the complexity is adequately low, considering the number of traffic
movements allowed and the number of intersections. (b) the installed sensors allow the
observation of three out of four intersection approaches. (c) the area shows good coverage
with loop detector and signals control devices utilized for the feature extraction for travel
time estimation.

For carrying out the empirical experiment, a prior analysis of traffic data from [25]
was performed that proved the existence of morning and evening peak hours. However,
the evening peak hour showed more severe congestion. Therefore, the measurement was
taken in the period between 4:00 p.m. and 6:00 p.m., i.e., traffic movements are filmed for
two hours on 31 March 2021. To determine the video data for all traffic flows gs(¢) and
travel times 7,(f), measurements with video cameras were performed. Six HD cameras
with tripods were placed according to a prior-analysis of adequate measurement spots to
cover all three traffic axis in the area. The high-quality cameras used have the following
specifications: two SONY HDR-PJ810 (video resolution 1920 x 1080, 24 frames per second),
three SONY AX53 4K, and one SONY AX43 4K (both types with a video resolution of
3840 x 2160, 30 frames per second).

The cameras are observed by one person each to ensure a correct and precise mea-
surement procedure. The spots C01-C06 are depicted in Figure 3a and the camera set-up
in Figure 3b. For the positioning of the cameras, the following conditions were ensured:
No influence of traffic flow or traffic behavior; no objects crossing the camera image such
as pedestrians; a camera angle that allows minimization of disturbances due to light re-
flections, for instance. A camera positioning that ensures that the conditions hold allows
the elimination of error sources in the automated video processing carried out later in
this work. Note that the area under investigation has already equipped thermal cameras.
Hence, the placement C01-C06 was chosen as close as possible to the installation spots of
thermal cameras. Note that we account for small distance deviations in Figures 3 and 4
in the processing described later. This ensures maximal comparability of the derived
quantities.

. Camera placement CO1 - C06

Co6
o1

East
Bound (EB)

210

585

180

(a) (b)

Figure 3. Set-up for empirical measurements: (a) placement and distance from the intersection center

(in meters) of six cameras capturing traversing traffic (C01-C06), (b) used camera set-up with HD
camera and tripod.
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5.2. Data Sources for Sensor Assessment

To develop a sensor-based analysis for traffic state representation in terms of traffic
flow and travel time and provide an accuracy assessment, the following data sources are
introduced in this section: already established thermal sensors in the area, processed video
data with the application of an ALPR algorithm [26], a compiled data set from the Google
Distance Matrix, and the manual inspection of the video data to derive the true traffic flow
and travel times.

Due to several disadvantages of visual cameras (e.g., privacy concerns, lightning
disturbances, visibility of objects, no observability of objects during the night), recently,
thermal cameras became more popular to observe traffic. Such sensors function by captur-
ing infrared radiation emitted by objects [27]. Although thermal cameras indicate problems
of distinguishing objects of the same temperature that lie close together, the sensors outper-
form traditional sensors in road user classification at night while performing similarly at
day time and under varying temperatures. Furthermore, it was shown that instantaneous
speed was determined more accurately by thermal cameras throughout all conditions [28].
Additionally, camera sensors (visual or thermal) have also been combined with Bluetooth
or WiFi sensors that allow capturing the signals of mobile devices. When a mobile device
is detected, a unique MAC address can be identified that enables vehicle identification
and re-identification [29]. By matching the unique MACs occurring at two or more sensor
locations in a network, travel times and the average speed can be determined [30].

The area under investigation is equipped with four overhead thermal cameras as
depicted in Figure 4, T1-T4. Note that the T2 and T3 capture both directions of traffic.
The camera technology is capable of detecting vehicles with user-defined virtual detection
zones. Thus, the determination of traffic flow for the set F is possible. Additionally, the
camera detects WiFi signals which allow the derivation of travel times 7 in the area. For
the export of the post-processed data, a commercial software system deployed by the
camera manufacturer is used. This should allow practical insights into the data quality
practitioners can expect when using such techniques for traffic management.

. Thermal camera placement

East
Bound (EB)

585
(a) (b)

Figure 4. Thermal camera set-up: (a) four mounted thermal cameras and distances from the inter-
section center (in meters) capturing traversing traffic (T1-T4), (b) example of an overhead mounted
thermal camera.

To show the capabilities of the empirical video data, we apply an ALPR algorithm to
post-process the recorded frames. ALPR is the automated process of recognizing an LP
and matching the correct letters and numerical characters. Different research areas have
proposed a variety of open source and commercial solutions for ALPR [31]. However, such
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algorithms are often tested under idealized conditions (e.g.,no reflections due to sunlight,
an acute angle for capturing the LP). Nevertheless, [26] proposed an algorithm based on
(a) the open-source network YOLO [32] for object detection, (b) the detection of the LP
with a novel proposed warped planar object detection network (WPOD-NET), (c) the LP
rectification with a convolutional neural network (CNN) model and (d) the matching to
letters and numerical characters with optical character recognition (OCR) by utilizing a
modified YOLO network. [26] shows that the proposed method outperforms academic and
commercial ALPR approaches with the processing of challenging test samples. We apply a
novel algorithm from [26] to our video data set to determine traffic flow and travel times.
The algorithm applies YOLO to detect objects as a first step. As we ensure that only vehicles
are detected, we can use the count as a proxy to determine traffic flow. The count data is
aggregated to show a flow time series of vehicles per hour. Travel times require a few more
processing steps as we are the first to apply this algorithm in Switzerland (i.e. filtering
different LP formats). When an LP is identified as correct by the filtering procedure, the
timestamp of entering or exiting a route r is stored in the data set. Swiss LPs are different
compared to others like European LPs. The LP shows (from left to right) the coat of arms of
Switzerland, an abbreviation for the Canton (always two characters, e.g., ZH for Zurich), a
number from 1 to 999999, and the coat of arms of the Canton. Consequently, the processing
has to ensure that OCR recognizes a string with a correct canton abbreviation and a string
that represents a number in [1, 999999]. All other detected samples are ignored. Note that
the ALPR algorithm ignores symbols. Hence, no problems with the coat of arms occur.
Additionally, special LPs such as the military (starts with an abbreviation “M”) are ignored
by the filtering procedure (such LPs only account for a small fraction of vehicles).

Google allows the requesting of travel distance and travel time data via the Google
Distance Matrix APL The API returns data based on HTTPS request information, including
a start and end location (specified as GPS points). For full documentation and parameter-
ization of the API, the interested reader is referred to [33]. In this work, we first specify
the set of routes R with a start and endpoint as latitude and longitude coordinates. In
addition, the heading angle of traffic is parameterized (i.e., for r; the angle, is equal to
90 degrees, indicating traffic moving east). Finally, we collect travel times of all routes for
the transportation mode ‘driving’ and the traffic model 'best_guess’. As the Google Dis-
tance API only allows to request data for the current timestamp or travel time predictions,
historical data can not be accessed. Therefore, we could not obtain the data set for the
time frame, we performed the empirical measurements with the video cameras. Hence,
we developed an algorithm that tracks travel times for all routes every Wednesday for
the identical time frame the empirical measurement was performed. Consequently, we
build up a data set with Google Distance Matrix travel times of three Wednesdays. The
developed algorithm sends HTTPS-requests to the Google API, post-processes the response
and adds a new entry to the data set.In a situation where traffic demand in the area is
similar every Wednesday from 4 p.m.—6 p.m., we compare the average of the collected
travel times to the other data sources. Note that this data set only allows the determination
of travel times, and that is not further processed with the methodology presented in the
next section.

Finally, the video data were processed manually to compile the ground-truth data set.
The two hours of video material were inspected by hand, and (a) vehicles were counted
per minute, and (b) the time stamp a vehicle passes a spot s of every intersection approach
was determined. In every recorded video, a virtual boundary was defined. When a vehicle
is crossing such a boundary, the timestamp of the corresponding video frame is collected.
Note that due to privacy regulations, the data set required the deletion of all LPs after the
data collection, i.e., we assigned a unique ID to every vehicle in the system to determine
gs(t), Vs and 7, (t), Vr.
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6. Results

In this section, the sensor-based assessment of traffic flows and travel times are shown
in the first subsection. The second subsection presents the estimation results of the proposed
MLR models and compares performances with the defined performance metrics.

6.1. Traffic State Representation and Sensor-Based Assessment

The traffic flow results are derived by determining the vehicle counts from (a) the
installed thermal cameras (b) the detected vehicles from the ALPR algorithm, and (c) the
empirical measurement, i.e., the ground-truth data set. Note that the Google Distance
Matrix does not allow the derivation of traffic flow. We derive all data sets and calculate
the 10 min moving average of all time series 41 (t)—g¢(t), i.e., the window size k = 10.
Figure 5a,b present the derived flow time series g1 (t) and g (t) for all data sets. In addition,
Figure 5c denotes the matching rate of the ALPR algorithm. The matching rate is calculated
by the fraction of detected vehicles by ALPR and the actually vehicle count from the
ground-truth data set.
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Figure 5. Flow evaluation of (a) 1 (t) and (b) g, (¢) at WB from the ground-truth measurement, the
ALPR, and the thermal camera T2; (c) shows the matching rate of the ALPR algorithm for both
derived flows.

A comparison 4 (t) and g2(t) of the ground-truth (in gray) and the data from the
thermal cameras (in blue) T4 and T1 show a high correlation between the time series. Only
small deviations of the thermal cameras’ detection are noticeable. A quantitative analysis
of the correlation coefficient p and the MAPE show a coefficient result of 0.91 and an error
rate of 4.83% for g1(t) and p = 0.93, MAPE = 3.33% for q,(t) (Table 1). Further, the ALPR
results are depicted in orange. The ALPR algorithm shows a good fit for g1 (¢) until the
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flow drops around timestamp 17:00 significantly. This can also be seen in the matching
rate of C1 that drops below 50%. After 17:30, the performance increases again with a
matching rate around 70% to 75%. The average matching rate of C1 is 70%, p = 0.81, and
MAPE = 15.54% (Table 1).

For g (t), the ALPR shows a lower performance compared to g1 (t). Several significant
deviations from the ground-truth data can be observed throughout the investigated period.
The matching rate of C2 shows an average rate of 59%. Nevertheless, it is observed that
the matching rate around 17:30 is below 10%. The error metrics show a performance of
p = 0.61, and MAPE = 12.64%. Figure 6 depicts the results for all data sources of q3(t) and
qa(t), respectively.
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Figure 6. Flow evaluation (a) 43(¢) and (b) g4(t) at EB from the ground-truth measurement, the ALPR,
and the thermal camera T3; (c) shows the matching rate of the ALPR algorithm for both derived
flows.

Again, a good fit of g3(f)’s ground-truth data and the thermal camera data from T3
can be observed (p = 0.94, MAPE = 3.86%). The ALPR results show significant deviations
from the ground truth over time. Especially around 16:20, a drop in the flow is observed.
In addition, from 16:45 until 17:30, deviations are observed and are supported by the
matching rate (Figure 6c) dropping below 50%. The average matching rate is calculated
with 59%, p = 0.58, and MAPE = 17.20%. Figure 6b shows a high deviation from the
ground-truth of the data set derived from T3. No correlation between the ground-truth
and the thermal camera data is determined, i.e., p = 0.00 and MAPE = 92.45%. The reason
for the high deviation is that T3 observes both traffic directions with one camera. Due
to the high lane width (two lanes for individual transport and two additional lanes for
public transportation), T3 cannot observe the traffic flow in this direction. A re-positioning
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of the camera or installing a second thermal camera could help improve the results. The
ALPR shows a correlation of p = 0.73 and MAPE = 9.17%. The average matching rate is
calculated with 76%. The performance metrics are collected in Table 1. Figure 7 shows the
results for g5(t) and g (t).
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Figure 7. Flow evaluation (a) g5(¢) and (b) g¢() at NB from the ground-truth measurement, the
ALPR, and the thermal camera T4 and T1; (c) shows the matching rate of the ALPR algorithm for
both derived flows.

The thermal cameras of T4 and T1 show good results for g5(¢) and g¢(t). Note that
two thermal cameras are installed due to a tram line between the two traffic lanes. For
the flow g5(t), the correlation p = 0.94 and MAPE = 3.86%; for g4(t), p = 0.99 and
MAPE = 1.22%. The ALPR algorithm shows deviations for both quantities. For g5(t),
the average matching rate is 70%, p = 0.58 and MAPE = 17.20%. The results for ge(t)
show decreased ALPR algorithm performance over time. An inspection of the ground-
truth video material showed that this is caused by increasing light reflections over time.
The average detection rate is equal to 57%, p = 0.76 and MAPE = 24.42%. Again, the
quantitative results are collected in Table 1.

Table 1. Correlation coefficient p and MAPE of ALPR (abbreviation LP), thermal camera data
(abbreviation TC) and the 10 min MA Ground Truth flow data.

q1(t) qg2(t) q5(t) qa(t) q5(t) g6 (t)
LP TC LP TC LP TC LP TC LP TC LP TC
o[-] 0.81 091 0.61 0.93 0.58 0.94 0.73 0.00 0.58 0.94 0.76 0.99

MAPE [%] 15.54 4.83 12.64 3.33 17.20 3.86 9.17 92.45 17.20 3.86 24.42 1.22
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The travel time results are derived by determining the timestamp when a vehicle
enters and exits the system. As data sources (a) the installed thermal cameras, (b) the
detected license plates from the ALPR algorithm (c) tracked data from the Google Distance
Matrix API, and (d) the empirical measurement, i.e., the ground-truth data set are used.
We derive all travel time data sets and calculate the 10 min weighted moving average
(the window size k = 10) of the routes ry, r3, 14, and rs; consequently, 7 (t), T3(t), T (t),
and 75(t). Note that for r; and r4, the ground-truth data set showed low traffic volume (7
and 19 vehicles for the measurement period, respectively). Thus, data gaps occur, and a
comparison of different data sources would not lead to a representative result. Therefore,
these two routes are excluded from the analysis.

Figure 8a,b presents the derived travel time series 71 (f) and 73(¢) for all data sets. The
travel time results for 74 (t) and 75(t) are depicted in Figure 8c,d.
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Figure 8. Travel time evaluation for (a) 71 (¢), (b) 13(t), (¢) 74(¢) and (d) 75(¢) with the ground-truth
measurement, the ALPR, the set of thermal cameras, and the Google Distance Matrix API data set.

The performance metrics are compiled in Table 2. One can note that the quantity
71 (t) increases over time, peaks around 17:45, and decreases again afterward. Results
computed from the ALPR detections (orange time series) replicate this trend with small
deviations. The time series correlate with p = 0.99 and an MAPE = 3.14%. Contrary
results are shown by the set of thermal cameras T2 and T3 that are utilized for travel time
derivation of 7;(t). The time series only shows small variations and does not capture
the trend of the ground-truth data (p = 0.71, MAPE = 58.07%). Potential reasons for
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the modest performance can be (a) a low penetration rate, i.e., a small number of WiFi
devices are detected, or (b) the data are strongly post-processed. The time series computed
from the Google Distance Matrix API shows a higher variance than the thermal camera
data and fails to show the variation of the ground-truth data. Especially around 17:30,
when travel time continues to rise, the Google Data (green time series) does not react to
this system behavior. The correlation with the ground-truth results in p = 0.27 and the
MAPE = 25.95%. The results show a similar trend for the travel time results of 73(). The
ALPR results replicate the ground-truth data with some small over- and underestimations.
Nevertheless, one can note a data gap from 17:30 to 17:45, where no vehicles were detected.
This results in a correlation of p = 0.84 and MAPE = 8.04%. Again the time series of the
thermal camera data and the Google Distance Matrix API under- and overestimate the
travel time, respectively. Both methods do not allow a reaction to a travel time change
from, e.g., 180 sec to 250 sec at 16:45, as the peak is not covered. Additionally, the Google
data does not show any variance, i.e., the standard deviation is zero. This also does
not allow the determination of a correlation coefficient. Hence, Table 2 denotes such
observations with ‘NA’. For the thermal camera data, the computed performance metrics
are p = —0.11, MAPE = 18.36%, and for the Google data p = NA, MAPE = 50.64%. For
T4(t), similar results as for 73(t) are derived. The ALPR algorithm allows the derivation
of travel times that show a good fit to the ground-truth (o0 = 0.85, MAPE = 7.51%), and
the thermal camera data and Google data under- and overestimate the travel time with
performance metrics of p = —0.13, MAPE = 26.76% and p = NA, MAPE = 73.38%,
respectively. For the travel times on r¢, i.e., 75(t), the ALPR algorithm allows an accurate
representation of the ground-truth data with p = 0.99 and MAPE = 2.73%. The thermal
camera data shows a correlation of p = 0.72 with an MAPE = 20.60% and the Google data
allows the computation of p = 0.33 and MAPE = 45.49%.

Table 2. Correlation coefficient p and MAPE of ALPR (abbreviation LP), thermal camera data
(abbreviation TC), Google Distance Matrix API data (abbreviation G) and the 10 min MA ground
truth flow data. Note that a correlation denoted as NA=not available means that the time series
standard deviation is zero.

71 (t) T3(t) 74 (1) 75(t)
LP TC G LP TC G LP TC G LP TC G
o[-] 0.99 0.71 0.27 0.84 —-0.11 NA 0.85 —-0.13 NA 0.99 0.72 0.33
MAPE [%] 3.14 58.07 25.95 8.04 18.36 50.64 7.51 26.76 73.38 2.73 20.60 45.49

6.2. Travel Time Estimation Assessment

To show the performance of a travel time estimation procedure, we train and apply
the proposed MLR model. First, baseline models are trained with the data sample of (5%)
available moving sensor data as the only predictor for all routes R. After creating the
baseline, the other features are included in the model, and a final estimation model is
derived. To show the performance of the trained model, we utilize r3 as a test. Figure 9
shows the comparison of the following time series: the actual ground-truth, the 5% data
sample without estimation, the travel time estimation of the baseline, and the final model.

Results show that a 5% data sample is insufficient to represent the ground-truth travel
time 73(t). This is supported by a high MAPE = 18.10%. The trained baseline model shows
an adjR? of 0.40 and over- and underestimates the travel time in Figure 9. The predicted
time series results in an MAPE of 11.62%. Nevertheless, it can be shown that our model
already improves the estimation by 6.48%. Finally, we apply the model with all features
utilized as predictors. Although the model also indicates deviations from the ground-truth
data, the adjR? equals 0.81, and the MAPE reduces further to 10.92% (see Table 3).
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Figure 9. 10 min WMA travel times estimates of the baseline model, estimation model, compared to
the 5% data sample and the ground-truth on r3.

Table 3. Adjusted R-square values of the model performance on the training data. MAPE denotes the
comparison of travel times estimates (baseline model and estimation model), and 5% sample of r3.

r3 adjR? [-] MAPE [%]
5% sample - 18.10
Base Model 0.40 11.62
Final Model 0.81 10.92

7. Discussion
7.1. Traffic States—Traffic Flow

Traffic states were determined in terms of traffic flow and travel times in this work.
Results compare first traffic flows estimated for all six measurement spots by thermal
cameras, ALPR, and the ground-truth computed based on video measurements.

From thermal cameras, measurements of traffic flows with high accuracy were deter-
mined. Only time series of traffic flow g4 show higher estimation error in comparison to
ground-truth. The reason is that at this measurement spot, only one thermal camera is used
to detect both traffic directions. Whereas this has worked with high accuracy for detecting
flows g7 and g7, lane width for this intersection approach is wider due to a dedicated tram
track in the center of the road. Therefore, vehicles could not be identified with the expected
high accuracy. Estimation on the other traffic direction g3 has shown low error values. This
could have been caused by the mounting of the thermal camera, which is placed more on
the traffic lane dedicated to g3.

The applied ALPR algorithm also shows promising results for traffic flow. Neverthe-
less, some under- and overestimations could be identified, e.g., 41 (and the corresponding
camera C1), the underestimation of traffic flow corresponds to a drop in the matching rate
below 45%. A manual inspection of the video measurement shows that vehicles arrive
at the measurement spot in groups with short spacing. Consequently, a shorter period is
available for the camera to focus, resulting in a lower detection rate of ALPR algorithm.
The detection rate for C2 shows even lower values around 17:30, where the matching rate
drops below 10%. Similarly, low matching rate is likely to be caused by vehicles arriving in
groups. Additionally, the lane widens due to a bus stop, allowing for a vehicle position
with a higher variance from the center of the lane. Consequently, situations occur where
the vehicle’s license plate is covered by the front vehicle. In addition, for C3 the same
situations could be identified when analyzing the video material. This causes a continuous
drop in the matching rate from 16:20 to 17:10 (and therefore also deviations in traffic flow).
Additionally, there is significant cycling traffic on the bike lane, which can a situation,
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where a cyclist traveling at a similar speed as a vehicle blocks the sight to the vehicle’s
license plate.

7.2. Traffic States—Travel Times

For the estimation of travel times, ALPR shows a good performance in computed
results. The variance of travel times shown in ground-truth data is reflected by utilizing the
ALPR algorithm. Estimation errors that occur correlate with a low matching rate caused by
the factors already discussed when deriving traffic flow. Note that travel time series for
route r3 show a data gap for around 15 min at 17:30. This is caused by the low matching
rate that was already shown when determining g, with camera C2. Although thermal
cameras can determine traffic flow with high accuracy, the derived travel times show high
error values. The variance of our experiment’s travel times is important for short-time
traffic management. Nevertheless, the thermal camera and Google Distance Matrix data
do not show the real-world data trends.

Thermal cameras underestimate the travel times on all processed routes. On the
other hand, Google Distance matrix data overestimate all cases. For thermal cameras, it is
conjectured that penetration rate (i.e., number of vehicles that are detected via WiFi signal
divided by actual number of vehicles) is low. This could be improved by additional thermal
sensors upstream from the measurement points. Thus, multiple measurements could be
used to infer vehicle detections and consequently increase the penetration rate. Finally,
Google Distance matrix data overestimates travel times throughout the investigated period.

7.3. Travel Time Estimation Models

We have proposed two MLR models: a baseline model with 5% moving sensors (i.e., a
random sample from ground-truth data in our case) as input and a final model with the
same 5% data sample and features extracted from LD and traffic signal data. The 5% of data
was chosen as an exemplary low penetration rate to consider the difficulty of monitoring
traffic in an urban setting. In addition, the sample size emulates the transition period from
human-driven vehicles to CAVs. The results show that the 5% data sample alone is not
enough to represent the travel time of a given route (highest determined error values).
The baseline model enhances the estimation, but performance could be further improved
by fusing the data of extracted features (final MLR model). Although more sophisticated
modeling approaches can be found in the literature for such estimation tasks, an MLR
model provides a good performance baseline and also demonstrates that a methodological
framework could improve travel time estimations for future mobility systems.

8. Conclusions

The paper presents insights on arterial roads traffic state representation in terms of
traffic flows and travel times in an urban transportation network. In this work, we propose
a simple yet efficient multiple linear regression (MLR) model that fuses information from
several sources. The first version of MLR model, namely “baseline”, estimates travel times
and traffic flows using the information of a small vehicle fleet percentage (i.e., 5%). The
final MLR model fuses the above information with static loop detector (LD) and traffic
signal data. For assessment purposes an experimental campaign with video measurements
within a restricted area in Zurich, Switzerland has been organized, while additional data
sources (thermal camera, loop detector, and signaling data) were made available to the
authors by the city of Zurich.

More specifically, the work investigates a sensor-based assessment and takes into
account (a) data from thermal cameras, (b) post-processed video data with an automated
license plate recognition (ALPR) algorithm, and (c) travel times from the Google Distance
Matrix API. All post-processed data sources are then compared to the empirical ground-
truth measurements conducted in a particular urban area in Zurich, Switzerland. The traffic
measurements with video cameras allow the compilation of a data set with true traffic flow
of six detection spots and travel time values of six routes during two hours (afternoon
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peak). Results show that for the derivation of traffic flow, the thermal camera performs
best with a mean absolute percentage error (MAPE) below 5% for all detection spots. The
ALPR algorithm shows error values between 9% and 25%, which are due to decreasing
detection rates of the procedure caused by, e.g., light reflections. For the derivation of travel
times, the ALPR outperforms all other sensor technologies with an MAPE below 8% for all
routes. However, the performance of data from thermal cameras and the Google Distance
Matrix API is modest, with error values between 18% and 58%. Finally, we showcase the
performance of the proposed MLR model for travel time estimation. The model architecture
gets several extracted features from loop detector data and a 5% data sample from moving
sensor data (e.g., connected and automated vehicles (CAV)) as an input. We compare the
model performance with (a) the 5% data sample alone, (b) a baseline model that only sees
the 5% data sample for training, and (c) the actual ground-truth data. Results show that a
data sample such as 5% of the ground-truth data is not enough to represent the travel time
for a specific route. With the MLR baseline model, the MAPE can be reduced from 18.10%
to 11.62%; with the final model, the error reduces further to 10.92%.
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