Two-Level Blockchain System for Digital Crime Evidence Management
Abstract
:1. Introduction
2. Related Work
2.1. Digital Crime Investigation
2.2. Digital Evidence Management Research in Korea
2.3. Blockchain-Based Large Data Management
2.4. Blockchain and Hyperledger Fabric
3. Two-Level Blockchain System for Digital Crime Evidence Management
3.1. Design of the Two-Level Blockchain System
Algorithm 1 Save and Search of Hot & Cold Blockchain |
Input: Hot_Tx // Investigation and identity transaction Cold_Tx // Evidence video and identity transaction K // User Private key output: Save Success or Failure Search Result of Hot_Tx and Cold_Tx |
01 Hot_ledger [] ← NULL // Hot Blockchain Ledger 02 Cold_ledger [] ← NULL // Cold Blockchain Ledger 03 D [] ← List // User Digital Certificate 04 function Save(Hot_Tx, Cold_Tx, K) 05 I ← 0 // User index 06 V ← 0 // Valid flag 07 F ← 2 // Full flag 08 while D[I] do 09 if D[I] ∋ K && !is Empty(HoT_Tx) 10 V ← V + 1 11 Append(Hot_ledger [I], HoT_Tx) 12 end if 13 if D[I] ∋ K && !isEmpty(Cold_Tx) 14 V ← V + 1 15 Append(Cold_ledger[I], Cold_Tx) 16 end if 17 I ← I + 1 18 end while 19 while true do 20 if V = F return true 21 else return false 22 end if 23 end while 24 end function 25 function Search(HoT_Tx.ID and RNN, K) 26 I ← 0 // User index 27 R1 ← 0 // Hot_Tx 28 R2 ← 0 // Cold_Tx 29 while D[I] do 30 if D[I] ∋ K 31 if Hot_Tx[I].ID and RNN = Hot_Ledger[i].IDand RNN 32 R1 ← Hot_Ledger[I] 33 end if 34 if R1. EVI_ID = Cold_Ledger[I].EVI_ID 35 R2 ← Cold _Ledger[I] 36 end if 37 I ← I + 1 38 end while 39 return R1, R2 40 end function |
3.2. Implementation
4. Experimental Results and Analysis
4.1. Experimental Environment
4.2. Experimental Results
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Jonston, A. Murder Charges Filed in 1985 Cold Case. Available online: https://oag.ok.gov/articles/murder-charges-filed-1985-cold-case (accessed on 27 April 2021).
- Choi, S.W. Every Crime Leaves a Mark. Available online: https://sedaily.com/NewsView/1OMAEK89A4 (accessed on 27 April 2021).
- Police Agency in Korea Police. White Paper: A Society Safe from Crime; Korean National Police Agency: Seoul, Korea, 2019; p. 232. [Google Scholar]
- Jung, H.H. Management from the perspective of the Life Cycle of Digital Evidence. J. Digit. Forensics 2016, 10, 1–20. [Google Scholar]
- Jeong, J.; Kim, D.; Lee, B.; Son, Y. Design and Implementation of a Digital Evidence Management Model Based on Hyperledger Fabric. J. Inf. Process. Syst. 2020, 16, 760–773. [Google Scholar]
- Tak, H.S.; Lee, W.S. A Study on a Model Frame for the Integration of Digital Forensic Processes; Korean Institute of Criminology: Seoul, Korea, 2016. [Google Scholar]
- Arslan, S.S.; Goker, T. Compress-Store on Blockchain: A Decentralized Data Processing and Immutable Storage for Multimedia Streaming. In Proceedings of the IEEE BCCA, Antalya, Turkey, 2–5 November 2020. [Google Scholar]
- Sahoo, S.; Fajge, A.M.; Halder, R.; Cortesi, A. A Hierarchical and Abstraction-Based Blockchain Model. Appl. Sci. 2019, 9, 2343. [Google Scholar] [CrossRef] [Green Version]
- Oktian, Y.E.; Lee, S.-G.; Lee, H.J. Hierarchical Multi-Blockchain Architecture for Scalable Internet of Things Environment. Electronics 2020, 9, 1050. [Google Scholar] [CrossRef]
- Albizri, A.; Appelbaum, D. Trust but Verify: The Oracle Paradox of Blockchain Smart Contracts. J. Inf. Syst. 2021. [Google Scholar] [CrossRef]
- Garfinkel, S.L. Digital forensics research: The next 10 years. Digit. Investig. 2010, 7, S64–S73. [Google Scholar] [CrossRef] [Green Version]
- Frankle, J.; Park, S.; Shaar, D.; Goldwasser, S.; Weitzner, D. Practical accountability of secret processes. In Proceedings of the 27th USENIX Security Symposium, Baltimore, MD, USA, 15–17 August 2018. [Google Scholar]
- Norvill, R.; Pontiveros, B.B.F.; State, R.; Cullen, A. IPFS for Reduction of Chain Size in Ethereum. In Proceedings of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 30 July–3 August 2018; pp. 1121–1128. [Google Scholar]
- Hoffman, A.; Becerril-Blas, E.; Moreno, K.; Kim, Y. Decentralized Security Bounty Management on Blockchain and IPFS. In Proceedings of the 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 6–8 January 2020; pp. 241–247. [Google Scholar]
- Sun, J.; Yao, X.; Wang, S.; Wu, Y. Blockchain-Based Secure Storage and Access Scheme For Electronic Medical Records in IPFS. IEEE Access 2020, 8, 59389–59401. [Google Scholar] [CrossRef]
- Kumar, R.; Marchang, N.; Tripathi, R. Distributed Off-Chain Storage of Patient Diagnostic Reports in Healthcare System Using IPFS and Blockchain. In Proceedings of the 2020 International Conference on COMmunication Systems & NETworkS (COMSNETS), Bangalore, India, 7–11 January 2020; pp. 1–5. [Google Scholar]
- Naz, M.; Al-Zahrani, F.A.; Khalid, R.; Javaid, N.; Qamar, A.M.; Afzal, M.K.; Shafiq, M. A Secure Data Sharing Platform Using Blockchain and Interplanetary File System. Sustainability 2019, 11, 7054. [Google Scholar] [CrossRef] [Green Version]
- Donawa, A.; Orukari, I.; Baker, C.E. Scaling Blockchains to Support Electronic Health Records for Hospital Systems. In Proceedings of the 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, 10–12 October 2019; pp. 550–556. [Google Scholar]
- Jeong, J.; Kim, D.; Ihm, S.-Y.; Lee, Y.; Son, Y. Multilateral Personal Portfolio Authentication System Based on Hyperledger Fabric. ACM Trans. Internet Technol. 2021, 21. [Google Scholar] [CrossRef]
- Cebe, M.; Erdin, E.; Akkaya, K.; Aksu, H.; Uluagac, S. Block4Forensic: An Integrated Lightweight Blockchain Framework for Forensics Applications of Connected Vehicles. IEEE Commun. Mag. 2018, 56, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Lal, C.; Conti, M.; Hu, D. LEChain: A blockchain-based lawful evidence management scheme for digital forensics. Future Gener. Comput. Syst. 2021, 115, 406–420. [Google Scholar] [CrossRef]
- Gursoy, G.; Barnnon, C.; Wanger, S.; Gerstein, M. Storing and analyzing a genome on a blockchain. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Nyaletey, E.; Parizi, R.M.; Zhang, Q.; Choo, K.-K.R. BlockIPFS—Blockchain-Enabled Interplanetary File System for Forensic and Trusted Data Traceability. In Proceedings of the 2019 IEEE International Conference on Blockchain (Blockchain), Atlanta, GA, USA, 14–17 July 2019; pp. 18–25. [Google Scholar]
- Ma, M.; Shi, G.; Li, F. Privacy-Oriented Blockchain-Based Distributed Key Management Architecture for Hierarchical Access Control in the IoT Scenario. IEEE Access 2019, 7, 34045–34059. [Google Scholar] [CrossRef]
- Li, C.; Zhang, L.-J. A Blockchain Based New Secure Multi-Layer Network Model for Internet of Things. In Proceedings of the 2017 IEEE International Congress on Internet of Things (ICIOT), Honolulu, HI, USA, 25–30 June 2017; pp. 33–41. [Google Scholar] [CrossRef]
- Mielberg, E.L. Blockchain Remedy or Poison. OSF Preprints 2019. [Google Scholar] [CrossRef] [Green Version]
- Zamani, M.; Movahedi, M.; Raykova, M. Rapidchain: Scaling blockchain via full sharding. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018; pp. 931–948. [Google Scholar]
- Park, J.; Kim, H.; Kim, G.; Ryou, J. Smart Contract Data Feed Framework for Privacy-Preserving Oracle System on Blockchain. Computers 2020, 10, 7. [Google Scholar] [CrossRef]
- Zheng, Z.; Xie, S.; Dai, H.N.; Chen, X.; Wang, H. Blockchain challenges and opportunities: A survey. Int. J. Web Grid Serv. 2018, 14, 352–375. [Google Scholar] [CrossRef]
- Kuo, T.-T.; Kim, H.-E.; Ohno-Machado, L. Blockchain distributed ledger technologies for biomedical and health care applications. J. Am. Med. Inform. Assoc. 2017, 24, 1211–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubin, J.; Naik, M.; Subramanian, N. Merkelized Abstract Syntax Trees. Available online: http://www.mit.edu/~jlrubin/public/pdfs/858report.pdf (accessed on 27 April 2021).
- Li, Z.; Kang, J.; Yu, R.; Ye, D.; Deng, Q.; Zhang, Y. Consortium Blockchain for Secure Energy Trading in Industrial Internet of Things. IEEE Trans. Ind. Inform. 2017, 14, 1. [Google Scholar] [CrossRef] [Green Version]
- Helliar, C.V.; Crawford, L.; Rocca, L.; Teodori, C.; Veneziani, M. Permissionless and permissioned blockchain diffusion. Int. J. Inf. Manag. 2020, 54, 102136. [Google Scholar] [CrossRef]
- Satoshi, N. Bitcoin: A Peer-to-Peer Electronic Cash System. Available online: https://git.dhimmel.com/bitcoin-whitepaper (accessed on 27 April 2021).
- Christoper Ferris, Hyperledger Fabric Introduction. Available online: https://hyperledger-fabric.readthedocs.io/en/release-2.2/ (accessed on 27 April 2021).
- Chen, Y.; Li, H.; Zheng, B.; Bian, J. An Improved P2P file System scheme based on IPFS and Blockchain. In Proceedings of the IEEE International Conference on Big Data, Boston, MA, USA, 11–14 December 2017; pp. 2652–2657. [Google Scholar]
- Nasir, Q.; Qasse, I.A.; Abu Talib, M.; Nassif, A.B. Performance Analysis of Hyperledger Fabric Platforms. Secur. Commun. Netw. 2018, 2018, 3976093. [Google Scholar] [CrossRef] [Green Version]
Year | PCs/Laptops | CCTV/EDRs | Smartphones | Databases | Total |
---|---|---|---|---|---|
2014 | 3079 | 510 | 10,626 | 654 | 14,899 |
2015 | 3357 | 712 | 19,526 | 700 | 24,295 |
2016 | 3923 | 794 | 26,408 | 1156 | 32,281 |
2017 | 4198 | 867 | 30,238 | 767 | 36,060 |
2018 | 6239 | 1065 | 36,986 | 813 | 45,103 |
STEP 1. Register the authentication server ID for identity registration in the two-level blockchain system. |
STEP 1-1. The authentication center issues digital certificates and private keys to on-site investigators. |
STEP 1-2. Without a digital certificate and private key, the two-level blockchain system cannot be accessed. |
STEP 2. Hot and cold blockchain access is granted through a digital certificate and private key. |
STEP 2-1. Transactions including investigation and identity information are transmitted to the chaincode of the hot blockchain. |
STEP 2-2. Transactions containing a crime evidence video are transmitted to the chaincode of the cold blockchain. |
STEP 3. Hot and cold blockchain transactions are saved using digital certificate and private key verification. |
STEP 3-1. All judicial institutions in the two-level blockchain system—such as the National Police Agency, the prosecutor’s office, the local police agency, the court, and the cyber analysis team—share transactions. |
STEP 3-2. Blocks are distributed to all institutions in the two-level blockchain system through digital certificate and private key validation. |
Category | Environmental | Spec. & Version |
---|---|---|
PC | CPU | AMD Ryzen7 2700 × 3.70 GHZ |
RAM | 32 GB | |
OS | Ubuntu 16.0 TS | |
Storage | Samsung 980 Pro M.2 NVMe SSD 1 TB*2 (RAID-0) | |
Programming Language | Go | 11.4 |
Node.js | 12.16.3 | |
Framework | Hyperledger Caliper | 0.3.1 |
Hyperledger Fabric | 1.4 | |
Docker | 19.03 |
Configuration | Number of Configurations |
---|---|
Peer | 5 |
Orderer | 1 |
State Database | 5 |
Channel | 1 |
Client | 5 |
Certification Authority Server | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Ihm, S.-Y.; Son, Y. Two-Level Blockchain System for Digital Crime Evidence Management. Sensors 2021, 21, 3051. https://doi.org/10.3390/s21093051
Kim D, Ihm S-Y, Son Y. Two-Level Blockchain System for Digital Crime Evidence Management. Sensors. 2021; 21(9):3051. https://doi.org/10.3390/s21093051
Chicago/Turabian StyleKim, Donghyo, Sun-Young Ihm, and Yunsik Son. 2021. "Two-Level Blockchain System for Digital Crime Evidence Management" Sensors 21, no. 9: 3051. https://doi.org/10.3390/s21093051