Load Resistance Optimization of a Magnetically Coupled Two-Degree-of-Freedom Bistable Energy Harvester Considering Third-Harmonic Distortion in Forced Oscillation
Abstract
:1. Introduction
1.1. Introduction to Bistable Energy Harvesters
1.2. Contribution of This Study
2. Model Description
2.1. Geometric Dimensions and Material Properties
2.2. Mathematical Model of the 2-DOF MCBEH
3. Methods: Dynamic Simulation and Optimization
3.1. Dynamical Characterization Method
3.2. Analytical Optimization Method for Load Resistance
4. Results and Discussion
4.1. Frequency Response near the First Primary Resonance
4.2. Third-Harmonic Distortion in Interwell Motion
4.3. Optimization of the External Load Resistance of the 2-DOF MCBEH
4.4. Improvements in Broadband Performance
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, X.; Xu, S.; Yao, N.; Shi, Y. 1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers. Nano Lett. 2010, 10, 2133–2137. [Google Scholar] [CrossRef]
- Bakytbekov, A.; Nguyen, T.Q.; Huynh, C.; Salama, K.N.; Shamim, A. Fully printed 3D cube-shaped multiband fractal rectenna for ambient RF energy harvesting. Nano Energy 2018, 53, 587–595. [Google Scholar] [CrossRef]
- Kishore, R.A.; Priya, S. A review on low-grade thermal energy harvesting: Materials, methods and devices. Materials 2018, 11, 1433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Geng, L.; Ding, L.; Zhu, H.; Yurchenko, D. The state-of-the-art review on energy harvesting from flow-induced vibrations. Appl. Energy 2020, 267, 114902. [Google Scholar] [CrossRef]
- Lechêne, B.P.; Cowell, M.; Pierre, A.; Evans, J.W.; Wright, P.K.; Arias, A.C. Organic solar cells and fully printed super-capacitors optimized for indoor light energy harvesting. Nano Energy 2016, 26, 631–640. [Google Scholar] [CrossRef] [Green Version]
- Lv, J.; Jeerapan, I.; Tehrani, F.; Yin, L.; Silva-Lopez, C.A.; Jang, J.-H.; Joshuia, D.; Shah, R.; Liang, Y.; Xie, L. Sweat-based wearable energy harvesting-storage hybrid textile devices. Energy Environ. Sci. 2018, 11, 3431–3442. [Google Scholar] [CrossRef]
- Harb, A. Energy harvesting: State-of-the-art. Renew. Energy 2011, 36, 2641–2654. [Google Scholar] [CrossRef]
- Tan, T.; Yan, Z.; Zou, H.; Ma, K.; Liu, F.; Zhao, L.; Peng, Z.; Zhang, W. Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of things. Appl. Energy 2019, 254, 113717. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, S.; Zu, J.; Inman, D. High-performance piezoelectric energy harvesters and their applications. Joule 2018, 2, 642–697. [Google Scholar] [CrossRef] [Green Version]
- Vullers, R.J.; Van Schaijk, R.R.; Visser, H.J.; Penders, J.; Van Hoof, C. Energy Harvesting for Autonomous Wireless Sensor Networks. IEEE Solid-State Circuits Mag. 2010, 2, 29–38. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X. Rate and energy efficiency improvements for 5G-based IoT with simultaneous transfer. IEEE Internet Things J. 2018, 6, 5971–5980. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, M.; Adamaki, V.; Khanbareh, H.; Bowen, C.R. Control of electro-chemical processes using energy harvesting materials and devices. Chem. Soc. Rev. 2017, 46, 7757–7786. [Google Scholar] [CrossRef] [Green Version]
- Núñez, C.G.; Manjakkal, L.; Dahiya, R. Energy autonomous electronic skin. npj Flex. Electron. 2019, 3, 1–24. [Google Scholar] [CrossRef]
- Jiang, D.; Shi, B.; Ouyang, H.; Fan, Y.; Wang, Z.L.; Li, Z. Emerging Implantable Energy Harvesters and Self-Powered Implantable Medical Electronics. ACS Nano 2020, 14, 6436–6448. [Google Scholar] [CrossRef]
- Cook-Chennault, K.A.; Thambi, N.; Sastry, A.M. Powering MEMS portable devices—A review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 2008, 17, 043001. [Google Scholar] [CrossRef] [Green Version]
- Tran, N.; Ghayesh, M.H.; Arjomandi, M. Ambient vibration energy harvesters: A review on nonlinear techniques for performance enhancement. Int. J. Eng. Sci. 2018, 127, 162–185. [Google Scholar] [CrossRef]
- Daqaq, M.F.; Masana, R.; Erturk, A.; Dane Quinn, D. On the role of nonlinearities in vibratory energy harvesting: A critical review and discussion. Appl. Mech. Rev. 2014, 66, 040801. [Google Scholar] [CrossRef]
- Szemplińska-Stupnicka, W.; Rudowski, J. Steady states in the twin-well potential oscillator: Computer simulations and approximate analytical studies. Chaos 1993, 3, 375–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, H.; Yeatman, E.M. Broadband rotational energy harvesting using bistable mechanism and frequency up-conversion. In Proceedings of the 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, USA, 22–26 January 2017; pp. 853–856. [Google Scholar]
- Nguyen, M.S.; Yoon, Y.-J.; Kwon, O.; Kim, P. Lowering the potential barrier of a bistable energy harvester with mechanically rectified motion of an auxiliary magnet oscillator. Appl. Phys. Lett. 2017, 111, 253905. [Google Scholar] [CrossRef]
- Nguyen, M.S.; Yoon, Y.-J.; Kim, P. Enhanced broadband performance of magnetically coupled 2-DOF bistable energy harvester with secondary intrawell resonances. Int. J. Precis. Eng. Man. Technol. 2019, 6, 521–530. [Google Scholar] [CrossRef]
- Kim, H.; Priya, S.; Stephanou, H.; Uchino, K. Consideration of impedance matching techniques for efficient piezoelectric energy harvesting. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2007, 54, 1851–1859. [Google Scholar] [CrossRef]
- Song, H.-C.; Kumar, P.; Sriramdas, R.; Lee, H.; Sharpes, N.; Kang, M.-G.; Maurya, D.; Sanghadasa, M.; Kang, H.-W.; Ryu, J. Broadband dual phase energy harvester: Vibration and magnetic field. Appl. Energy 2018, 225, 1132–1142. [Google Scholar] [CrossRef]
- Liu, W.; Badel, A.; Formosa, F.; Wu, Y.; Agbossou, A. Novel piezoelectric bistable oscillator architecture for wideband vibration energy harvesting. Smart Mater. Struct. 2013, 22, 035013. [Google Scholar] [CrossRef]
- Liang, J.; Liao, W.-H. Impedance matching for improving piezoelectric energy harvesting systems. Proc. Act. Passiv. Smart Struct. Integr. Syst. 2010, 7643, 76430K. [Google Scholar]
- Bae, S.; Kim, P. Load Resistance Optimization of a Broadband Bistable Piezoelectric Energy Harvester for Primary Harmonic and Subharmonic Behaviors. Sustainability 2021, 13, 2865. [Google Scholar] [CrossRef]
- Bae, S.; Kim, P. Load Resistance Optimization of Bi-Stable Electromagnetic Energy Harvester Based on Harmonic Balance. Sensors 2021, 21, 1505. [Google Scholar] [CrossRef] [PubMed]
- Allane, D.; Vera, G.A.; Duroc, Y.; Touhami, R.; Tedjini, S. Harmonic power harvesting system for passive RFID sensor tags. IEEE Trans. Microw. Theory Tech. 2016, 64, 2347–2356. [Google Scholar] [CrossRef]
- Vera, G.A.; Duroc, Y.; Tedjini, S. Third harmonic exploitation in passive UHF RFID. IEEE Trans. Microw. Theory Tech. 2015, 63, 2991–3004. [Google Scholar] [CrossRef]
- Erturk, A.; Inman, D.J. Piezoelectric Energy Harvesting; John Wiley & Sons: Chichester, West Sussex, UK, 2011. [Google Scholar]
- Kim, P.; Nguyen, M.S.; Kwon, O.; Kim, Y.-J.; Yoon, Y.-J. Phase-dependent dynamic potential of magnetically coupled two-degree-of-freedom bistable energy harvester. Sci. Rep. 2016, 6, 34411. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Du, Y.; Wang, Z.; Ye, J.; Zhang, J.; Ma, M.; Zhong, X. Poly-stable energy harvesting based on synergetic multistable vibration. Commun. Phys. 2019, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
Metal Substrate | Piezoelectric Layer | Magnet | |
---|---|---|---|
Length | 73 mm (44 mm) | 73 mm (44 mm) | 2 mm |
Thickness | 0.3 mm | 0.052 mm | 6 mm |
Width | 10 mm | 10 mm | 10 mm |
Density | 7850 kg/m3 | 1780 kg/m3 | - |
Young’s modulus | 200 GPa | 3 GPa | - |
Piezoelectric strain constant | - | −23 pm/V | - |
Permittivity | - | 110 pF/m | - |
Mass | - | - | 1 g |
Mass moment of inertia | - | - | 4 g·mm2 |
Magnetization | - | - | 900 kA/m |
Separation distance | - | - | 11.6 mm |
Method | Beam 1 (Negligible Harmonic Distortion) | Beam 2 (Noticeable Third-Harmonic Distortion) | ||
---|---|---|---|---|
Resistance (MΩ) | Improvement | Resistance (MΩ) | Improvement | |
Unoptimized case | 1.0 | - | 1.0 | - |
Conventional impedance matching | 12.0 | 6.56 times | 19.8 | 2.83 times |
Proposed optimization method | 11.9 | 6.56 times | 6.8 | 3.72 times |
Numerically obtained maximum | 13.5 | 6.62 times | 8.0 | 3.75 times |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noh, J.; Kim, P.; Yoon, Y.-J. Load Resistance Optimization of a Magnetically Coupled Two-Degree-of-Freedom Bistable Energy Harvester Considering Third-Harmonic Distortion in Forced Oscillation. Sensors 2021, 21, 2668. https://doi.org/10.3390/s21082668
Noh J, Kim P, Yoon Y-J. Load Resistance Optimization of a Magnetically Coupled Two-Degree-of-Freedom Bistable Energy Harvester Considering Third-Harmonic Distortion in Forced Oscillation. Sensors. 2021; 21(8):2668. https://doi.org/10.3390/s21082668
Chicago/Turabian StyleNoh, Jinhong, Pilkee Kim, and Yong-Jin Yoon. 2021. "Load Resistance Optimization of a Magnetically Coupled Two-Degree-of-Freedom Bistable Energy Harvester Considering Third-Harmonic Distortion in Forced Oscillation" Sensors 21, no. 8: 2668. https://doi.org/10.3390/s21082668
APA StyleNoh, J., Kim, P., & Yoon, Y.-J. (2021). Load Resistance Optimization of a Magnetically Coupled Two-Degree-of-Freedom Bistable Energy Harvester Considering Third-Harmonic Distortion in Forced Oscillation. Sensors, 21(8), 2668. https://doi.org/10.3390/s21082668