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Abstract: In this study, the external load resistance of a magnetically coupled two-degree-of-freedom
bistable energy harvester (2-DOF MCBEH) was optimized to maximize the harvested power output,
considering the third-harmonic distortion in forced response. First, the nonlinear dynamic analysis
was performed to investigate the characteristics of the large-amplitude interwell motions of the
2-DOF MCBEH. From the analysis results, it was found that the third-harmonic distortion occurs in
the interwell motion of the 2-DOF MCBEH system due to the nonlinear magnetic coupling between
the beams. Thus, in this study, the third-harmonic distortion was considered in the optimization
process of the external load resistance of the 2-DOF MCBEH, which is different from the process
of conventional impedance matching techniques suitable for linear systems. The optimal load
resistances were estimated for harmonic and swept-sine excitations by using the proposed method,
and all the results of the power outputs were in excellent agreements with the numerically optimized
results. Furthermore, the associated power outputs were compared with the power outputs obtained
by using the conventional impedance matching technique. The results of the power outputs are
discussed in terms of the improvement in energy harvesting performance.

Keywords: bistable energy harvester; optimal resistance; harmonic distortion; broadband performance

1. Introduction
1.1. Introduction to Bistable Energy Harvesters

Energy harvesting, which draws useful electrical energy from environmental energy
sources [1–7], remains an active research area for various promising applications such as
smart environments and wireless sensor networks [8]. Energy harvesting has been consid-
ered as a possible alternative powering technology to chemical batteries [9]. When wireless
sensor networks are powered by energy harvesting technology, maintenance cost for bat-
tery replacement in places like buildings, bridges, or tires would be unnecessary [10,11]. In
addition, many researchers have been trying to apply energy harvesting technology to a
variety of emerging applications, such as electrochemical cycles [12], energy-autonomous
electronic skins [13], or wireless power transfer for implantable devices [14].

Nonlinear vibration-based energy harvesters (VEHs) have gained intensive attention
over the past decade for broadband energy harvesting applications [15,16]. A bistable
energy harvester (BEH) is the fundamental design of a nonlinear VEH [17]. The energy
harvester in this study utilizes the bistable configuration in which the potential energy,
as a function of displacement, has two local minima. Figure 1a shows the behavior of
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the monostable system, which has the single-well potential energy function. Path A in
Figure 1a represents the single-well oscillation. Figure 1b depicts the double-well potential
energy of the bistable system. The intrawell, interwell, and chaotic motions of the bistable
system appear, depending on the initial conditions and the excitation [18]. When the
intrawell motion appears, the system vibrates along path B in Figure 1b. Because the
oscillation occurs within one of the two potential wells, the amplitude of the oscillation is
insufficient for energy harvesting [19]. In contrast, bistable energy harvesters are capable of
extracting adequate power when oscillating along path C in Figure 1b. The system vibrates
across the wells when the state overcomes the saddle barrier, which is the local maximum
point between the wells. The output power harvested from this large-amplitude interwell
motion is bigger than that from the intrawell motion [20]. Thus, the main research effort in
this study was focused on the dynamical behavior in interwell motion in order to optimize
the energy harvesting performance.
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Figure 1. Schematics of the potential energy functions of (a) the monostable system and (b) the
bistable system. In (a), the monostable system has only a single-well oscillation plotted by A. In
contrast, in (b), the bistable system has not only the intrawell motion but also the interwell motion,
depicted by B and C, respectively. An attractor for complex chaotic motion might coexist with regular
behavior, but the chaotic motion is not investigated in this research.

1.2. Contribution of This Study

Figure 2 shows the schematic of a magnetically coupled two-degree-of-freedom
bistable energy harvester (2-DOF MCBEH) considered in this study. As shown in Figure 2,
the two piezoelectric bimorph beams are cantilevered into the base structure at the same
height on the opposite side. The two identical neodymium magnets are attached to the free
ends of the cantilevered beams, so that they are forced oppositely by repulsive magnetic
forces. The piezoelectric layers of the bimorph beams are poled in the thickness direction
and connected to the external load resistances in series. Such a 2-DOF MCBEH is known
to have superior broadband performance to conventional 1-DOF BEHs [21]. In this study,
the nonlinear dynamical behaviors of the 2-DOF MCBEH were investigated. From the
results of the dynamic analyses, the third-harmonic distortion in the interwell motion of
the 2-DOF MCBEH was observed and considered important in the optimization process of
the external load resistances to maximize the energy harvesting performance.

Impedance matching is the most well-known technique for the load resistance op-
timization of VEHs [22]. The main object of this technique is to obtain the equivalent
impedance of the mechanical part with an equivalent circuit model. For example, Song et al.
measured the internal impedance of the VEH at driving frequency and matched load re-
sistance to this measured impedance [23]. Liu et al. matched the resistance of the bistable
energy harvester at linear resonance frequency to optimize performance [24]. However,
the use of this impedance-matching technique for bistable energy harvesters is based on
the oversimplification that only the fundamental frequency component of response is
considered in the load resistance optimization [25]. In previous works [26,27], the load
resistance optimizations of the 1-DOF bistable piezoelectric and electromagnetic energy
harvesters were performed for primary harmonic and subharmonic interwell motions.
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It was demonstrated that the optimal load resistance strongly depended on the oscilla-
tion frequency of the interwell motion rather than on the forcing frequency of excitation.
Although harmonic distortions in the interwell motions of the 1-DOF systems were not
significant [26,27], it can be readily deduced that high-order frequency components are im-
portant in the optimization of the external load resistance. Thus, the impedance matching
technique is possibly undesirable and inappropriate for the load resistance optimization of
the 2-DOF MCBEH when certain high-order harmonics are significant in response (e.g., the
third-harmonic distortion of beam 2 presented later in this study).
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Figure 2. Three-dimensional view of the two-degree-of-freedom bistable energy harvester (2-DOF
MCBEH). A longer beam located on the left is the bimorph beam 1, and a shorter beam located on
the right is the bimorph beam 2. The identical permanent magnets are attached to the tips of the
beams. The base, considered as a rigid body, excites the beams. The harmonic motion of the base
is confined to upward and downward movement. The energy harvester scavenges this vibrational
energy to extract electrical power.

The nonlinear dynamic analyses and load resistance optimization were performed in
this study to maximize the energy harvesting performance of the 2-DOF MCBEH. First,
frequency response analysis was conducted to find the operating frequency range of the
2-DOF MCBEH, where the large-amplitude interwell motion occurs. Second, to investigate
the effects of high-order harmonics on the dynamic response, the interwell motions were
analyzed in the frequency domain by the fast Fourier transform. It was found that for beam
2, the third-order harmonic component as well as the fundamental harmonic component
plays an important role in the interwell oscillation of the 2-DOF MCBEH, which leads to
the third-harmonic distortion. Therefore, in this study, an optimization process for the load
resistance was established with consideration of the third-harmonic distortion. The optimal
load resistances estimated by the proposed optimization method were compared with those
evaluated by the numerical optimization process and the conventional impedance matching
technique. The results of this study imply that the proposed optimization process, in which
the third-harmonic distortion is considered, can be extended to various fields [28,29].

2. Model Description
2.1. Geometric Dimensions and Material Properties

Figure 3a shows the geometric configurations of the 2-DOF MCBEH. A coordinate
system is fixed at the clamped end of the bimorph beam 1. The x-axis is in the longitudinal
direction of the beam along the neutral surface, and the z-axis is in the thickness direction.
The gravitational force is assumed to act in the y-direction. In Figure 3a, Li and RLi are the
length of the beam and the external load resistance, respectively, where the symbol i (=1 or
2) in the subscript indicates beam 1 or 2, lt is the half length of the permanent magnet, and
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d is the separation distance between the centers of mass of two magnets when the beams
are undeformed. Figure 3b shows a schematic of the motion of the 2-DOF MCBEH. In this
figure, zb is the displacement of the base structure excited harmonically in the z-direction
and wi (i = 1 or 2) is the transverse deflection of the tip. The sign of w1 is positive for
upward motion and opposite to the sign of w2, as depicted in Figure 3b. Figure 3c shows
a cross-sectional view of the bimorph beam. In this figure, b is the width of the beam, hs
and hp are the thicknesses of the metal substrate and piezoelectric layers, respectively, and
the thickness of the electrode is neglected. The dimensions of the permanent magnet are
depicted in Figure 3d, where 2ht and 2bt are the thickness and width of the two identical
neodymium magnets, respectively. The values of the geometric dimensions and material
properties used in this study are listed in Table 1.
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Figure 3. Geometric configurations and a schematic of motion of the 2-DOF MCBEH. Notations
for geometric dimensions and coordinate system are depicted in (a). (a) shows that the external
resistances are connected to the bimorph beam in series. (b) is a schematic of motion of the 2-DOF
MCBEH in the x-z plane. The system is excited by the harmonic base displacement. The sign
conventions of the tip deflections of the beams are opposite to each other. The out-of-phase motion of
the beams is depicted in (b). (c) gives the magnified cross-sectional view of the bimorph beams. Each
beam has the same dimensions except for the length. The thickness of the electrodes is neglected
because it is too thin. The geometry of two identical neodymium magnets is shown in (d). The center
of the magnet is considered to coincide with the centroid of the bimorph beam.
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Table 1. Geometric dimensions and material properties of the 2-DOF MCBEH. The values in the
parentheses are the values for beam 2.

Metal Substrate Piezoelectric Layer Magnet

Length 73 mm (44 mm) 73 mm (44 mm) 2 mm
Thickness 0.3 mm 0.052 mm 6 mm

Width 10 mm 10 mm 10 mm
Density 7850 kg/m3 1780 kg/m3 -

Young’s modulus 200 GPa 3 GPa -
Piezoelectric strain constant - −23 pm/V -

Permittivity - 110 pF/m -
Mass - - 1 g

Mass moment of inertia - - 4 g·mm2

Magnetization - - 900 kA/m
Separation distance - - 11.6 mm

2.2. Mathematical Model of the 2-DOF MCBEH

For the curvatures of the beams, the Euler–Bernoulli beam theory for perfectly bonded
composite structures was employed. For the constitutive relation, the linear elastic material
model was utilized. The permanent magnets (or tip masses) were approximated to be
perfectly constrained at the tips of each beam and have the same rotational angle as
the that of the tips. The magnetic charge model was applied to describe the magnetic
repulsive force acting on the tip in free space. Using Hamilton’s principle, the governing
field equations were derived and, subsequently, the modal analysis was performed to
obtain the linear natural frequencies and mode shapes [30]. After imposing the single
mode approximation and discretization assumption on the governing equations in modal
coordinates, the oscillator model of the 2-DOF MCBEH can be derived as follows [31]:

..
wi + 2ζiωi

.
wi + ω2

i wi − βiVi − Fmi = −αi
..
zb, i = 1, 2, (1)

.
Vi + ηiVi + γi

.
wi = 0, i = 1, 2, (2)

where Vi is the voltage response, ζi is the damping ratio, ωi is the linear natural frequency,
βi is the modal electromechanical coupling coefficient for motion, Fmi is the modal magnetic
force, αi is the modal excitation coefficient, ηi is the modal resistance, and γi is the modal
electromechanical coupling coefficient for circuit. Herein, the modal resistance and base
excitation are expressed by

ηi =
2

CpiRLi
, (3)

..
zb = Fb cos(Ωt) (4)

where Cpi is the equivalent capacitance for the piezoelectric layer, and Fb and Ω are the
amplitude and frequency of the base excitation, respectively.

For the geometric dimensions and material properties listed in Table 1, the values
of the parameters were obtained as follows: ω1 = 1.5461× 102 rad/s, ω2 = 3.4785×
102 rad/s, β1 = −1.6474× 10−3 C/kg·m, β2 = −3.0738× 10−3 C/kg·m, α1 = 1.1597,
α2 = −1.0870, η1 = 1.3141× 103/s, η2 = 2.1802× 103/s, γ1 = −3.2167× 103 V/m, and
γ2 = −8.9713× 103 V/m. In addition, both of the damping ratios, ζ1 and ζ2, were chosen
as 0.007.

3. Methods: Dynamic Simulation and Optimization
3.1. Dynamical Characterization Method

For numerical dynamic simulation, the second-order ordinary differential equations
(ODEs) given by Equation (1,2) were converted by introducing the following state vector,

→
x =

[
x1 x2 x3 x4 x5 x6

]T
=
[ .

w1 w1 V1
.

w2 w2 V2
]T , (5)
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into a system of the first-order ODEs:

.
→
x =



−2ζ1ω1x1 −ω2
1x2 + β1x3 + Fm1 − α1

..
zb

x1
−γ1x1 − η1x3

−2ζ2ω2x4 −ω2
2x5 + β2x6 + Fm2 − α2

..
zb

x4
−γ2x4 − η2x6

. (6)

The direct numerical integration of Equation (6) was performed by implementing
the Runge–Kutta method. The frequency responses for the beam deflections and output
voltages were evaluated by means of sine sweep technique with zero initial conditions.
To analyze the nonlinear behaviors of the 2-DOF MCBEH, the excitation frequency was
increased from 11.9 Hz to 17.5 Hz, where the third-harmonic distortion in the interwell
motion of beam 2 occurs. The amplitude of the base excitation was set to be 6 m/s2.

3.2. Analytical Optimization Method for Load Resistance

Frequency-domain analysis was performed by the fast Fourier transform of the time
responses obtained by the numerical simulation. Based on the frequency-domain results,
the tip deflection and voltage across the external load resistance can be expressed by

wi =
∞

∑
n=1

{
WineinΩt + W∗ine−inΩt

}
, (7)

Vi =
∞

∑
n=1

{
ΨineinΩt + Ψ∗ine−inΩt

}
(8)

where n indicates the order of the harmonic term and Ω is the angular excitation frequency.
Substituting Equations (7) and (8) into Equation (2) and performing mathematical

manipulation lead to

Ψin =
−inΩγi
inΩ + ηi

Win, (9)

and the resulting root mean square (RMS) output power becomes

PRMSi =
V2

RMSi
RLi

= 2
∞

∑
n=1

(nΩγi)
2

RLi

{
(nΩ)2 + η2

i

} |Win|2. (10)

An equation for maximizing the RMS power, ∂PRMSi/∂RLi

∣∣∣RLi=Ropti = 0 , where Ropt

represents the optimal load resistance, takes the form:

∞

∑
n=1

n2
{

η2
opti − (nΩ)2

}
|Win|2{

η2
opti + (nΩ)2

}2 = 0. (11)

Solving Equation (11) for ηopti gives the optimal load resistance as follows:

Ropti =
2

ηoptiCpi
. (12)

4. Results and Discussion
4.1. Frequency Response near the First Primary Resonance

Figure 4 shows the frequency responses of the piezoelectric bimorph beams of the
2-DOF MCBEH near the first primary resonance under the harmonic base excitation, of
which the amplitude is set to be 6 m/s2. The bifurcation structure of the 2-DOF MCBEH
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has been already studied [31]. Because the amplitude of the excitation is strong enough to
surmount the potential saddle barrier, the potential well escape phenomena occur and lead
to the large-amplitude interwell motion, as shown in Figure 4. For the forward-sweep re-
sponse, a discontinuous change in the amplitude is observed when the excitation frequency
reaches 14.6 Hz. This jump phenomenon is initiated by the saddle-node bifurcation of the
intrawell motion, launching the periodic interwell motion. Subsequently, the amplitude of
the interwell motion persists in growing until the excitation frequency becomes 17.6 Hz, at
which point the motion jumps down onto the cross-well chaotic motion by the saddle-node
bifurcation of the interwell motion. For the backward-sweep response, the T-periodic
intrawell motion is transformed into the 2T-periodic oscillation by the period-doubling
bifurcation, when the excitation frequency is 18.7 Hz. Afterward, the period-doubling
cascade is developed, and the cross-well chaotic motion begins when the excitation fre-
quency is 18.4 Hz. At the excitation frequency of 15.6 Hz, the boundary crisis occurs
and leads to the unique large-amplitude interwell motion. The periodic interwell motion
perishes when reaching the Neimark–Sacker bifurcation, and the unstable motion becomes
stabilized when jumping down onto the solution branch of the periodic intrawell motion.
Although the multiple responses (e.g., intrawell, interwell, and chaotic motions) can coexist
at the same excitation frequency, the regular interwell motion is our main interest, so it
was investigated and its frequency range was identified. The marked region above the
graph in Figure 4, from 11.9 to 17.5 Hz, indicates where the interwell motion can be found.
This frequency interval between 11.9 to 17.5 Hz was chosen to analyze nonlinear dynamic
behavior in detail.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 4. Swept sine response is shown. To identify the region in which attractors for interwell 
motion exist, the forward-sweep response is overlaid with the backward-sweep response. The 
marked region, from 11.9 to 17.5 Hz, above the graph indicates where the regular attractors for 
interwell motion exist. The amplitude of the excitation was set to be 6 m/s2. 

4.2. Third-Harmonic Distortion in Interwell Motion 
The steady-state responses in the region of the first primary resonance are presented 

in the time and frequency domains in Figure 5. The interwell motions were obtained at 
the excitation frequencies of 11.9 Hz, 13.7 Hz, 15.6 Hz, and 17.5 Hz and were compared to 
each other to demonstrate changes in the responses of the 2-DOF MCBEH as the excitation 
frequency increased. As shown in Figure 5a–d, the tip deflection of beam 1 is amplified at 
a higher excitation frequency; however, the form of the oscillation stays unchanged. As 
observed in Figure 5a, when the excitation frequency is low, beam 2 oscillates almost out-
of-phase with beam 1. However, for beam 2, the partial in-phase swing motion becomes 
more notable as the excitation frequency approaches 17.5 Hz. Figure 5e–h shows the 
results of applying the fast Fourier transform to Figure 5a–d. For both beams, the 
fundamental and third-order harmonic components are observed and compared. For 
beam 1, the third-harmonic component is always much smaller than the fundamental-
harmonic component and tends to be more suppressed as the excitation frequency 
increases. This means that the distortion of the primary harmonic response produced by 
the third-harmonic component is negligible. On the other hand, for beam 2, the effect of 
the third-harmonic component (and thus the third-harmonic distortion) is more 
significant with the increase of the excitation frequency. The third-harmonic component 
in the response of beam 2 is relatively small at the lowest excitation frequency (Figure 5e), 
but it continues to increase with the excitation frequency (Figure 5f), and finally, it 
becomes larger than the fundamental-harmonic component (Figure 5g–h). Figure 5d,h 
clearly demonstrates that for beam 2, the third-harmonic distortion in the response is 
remarkable, while negligible for beam 1. The rapid growth in the third-harmonic 
distortion of beam 2 results in the amplification of the in-phase swing of beam 2 in Figure 
5a–d. 

Figure 4. Swept sine response is shown. To identify the region in which attractors for interwell
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marked region, from 11.9 to 17.5 Hz, above the graph indicates where the regular attractors for
interwell motion exist. The amplitude of the excitation was set to be 6 m/s2.

4.2. Third-Harmonic Distortion in Interwell Motion

The steady-state responses in the region of the first primary resonance are presented
in the time and frequency domains in Figure 5. The interwell motions were obtained at
the excitation frequencies of 11.9 Hz, 13.7 Hz, 15.6 Hz, and 17.5 Hz and were compared to
each other to demonstrate changes in the responses of the 2-DOF MCBEH as the excitation
frequency increased. As shown in Figure 5a–d, the tip deflection of beam 1 is amplified
at a higher excitation frequency; however, the form of the oscillation stays unchanged.
As observed in Figure 5a, when the excitation frequency is low, beam 2 oscillates almost
out-of-phase with beam 1. However, for beam 2, the partial in-phase swing motion
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becomes more notable as the excitation frequency approaches 17.5 Hz. Figure 5e–h shows
the results of applying the fast Fourier transform to Figure 5a–d. For both beams, the
fundamental and third-order harmonic components are observed and compared. For
beam 1, the third-harmonic component is always much smaller than the fundamental-
harmonic component and tends to be more suppressed as the excitation frequency increases.
This means that the distortion of the primary harmonic response produced by the third-
harmonic component is negligible. On the other hand, for beam 2, the effect of the third-
harmonic component (and thus the third-harmonic distortion) is more significant with the
increase of the excitation frequency. The third-harmonic component in the response of
beam 2 is relatively small at the lowest excitation frequency (Figure 5e), but it continues to
increase with the excitation frequency (Figure 5f), and finally, it becomes larger than the
fundamental-harmonic component (Figure 5g–h). Figure 5d,h clearly demonstrates that
for beam 2, the third-harmonic distortion in the response is remarkable, while negligible
for beam 1. The rapid growth in the third-harmonic distortion of beam 2 results in the
amplification of the in-phase swing of beam 2 in Figure 5a–d.
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Figure 5. The steady-state interwell responses of the two piezoelectric bimorph beams are shown. (a–d) are the time
responses obtained when the excitation frequencies are 11.9 Hz, 13.7 Hz, 15.6 Hz, and 17.5 Hz, respectively, which belong
to the frequency region of the first primary resonance. The amplitude of the excitation is 6 m/s2. The magnitudes of
the harmonic components in the time responses (a–d) are plotted in (e–h). It is observed that the magnitudes of the fifth
harmonic terms are negligible for all the cases (e–h).
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According to the results of the fast Fourier transform, total harmonic distortion de-
noted by Ki reduces to the third-harmonic distortion as follows:

Ki ,

√
W2

i2 + W2
i3 + W2

i4 + · · ·
|Wi1|

≈ |Wi3|
|Wi1|

. (13)

Thus, the third-harmonic distortion measures the relative contribution of the third-
harmonic component to the fundamental-harmonic component towards the interwell
motion. Referring to Figure 6, as the excitation frequency approaches 17.5 Hz, the quan-
titative third-harmonic distortion of beam 1, evaluated by using Equation (13), tends to
slightly decrease, and its absolute value remains small in the entire frequency band; on the
other hand, the third-harmonic distortion of beam 2 soars dramatically, which means that
the third-harmonic distortion has a significant effect on the nonlinear interwell motion of
the 2-DOF MCBEH.
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Figure 6. The quantitative third-harmonic distortions, the ratios of the magnitude of the third
sinusoidal component to the magnitude of the fundamental component, of the steady-state response
in interwell motion. In the calculations, the amplitude of the excitation was set to be 6 m/s2.

4.3. Optimization of the External Load Resistance of the 2-DOF MCBEH

The load resistance optimization is proposed in this section, considering third-harmonic
distortion. As shown in the previous section, the interwell motion of beam 2 can be as-
sumed to have the fundamental- and third-harmonic components, and accordingly the
optimization problem given by Equation (11) reduces to the form:

∑
n=1,3

n2
{

η2
opti − (nΩ)2

}
|Win|2{

η2
opti + (nΩ)2

}2 = 0. (14)

Rearranging Equation (14) gives a polynomial equation in the following vector form:
N2K2

i + 1(
−N4K2

i + 2N2K2
i + 2N2 − 1

)
Ω2(

−2N4K2
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i − N4)Ω6


T

η6
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1

 = 0. (15)
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The optimal load resistance Ropti considering the third-harmonic distortion can be
obtained by solving Equation (15).

For the case of the conventional impedance matching technique commonly used for
linear systems, only the fundamental-harmonic component of the response is considered
in the optimization process. In this case, the optimization problem further reduces to
η2

opti −Ω2 = 0 by taking n = 1 only in Equation (14), and the matched load resistance Rmat

can be obtained in the closed form:

Ropti = Rmati =
2

ΩCpi
for n = 1 only. (16)

Figure 7 shows a comparison of the optimal load resistance (obtained by the proposed
method) to the matched load resistance (obtained by the conventional impedance match-
ing method). For beam 1, because the third-harmonic distortion was negligible, small
discrepancies between the optimal resistances and the matched resistances are observed.
In contrast, for beam 2, because the third-harmonic distortion was relatively small at a
low frequency and notably large at a high frequency, the differences between the optimal
resistances and the matched resistances become more significant as the excitation frequency
increases. This suggests that for beam 2, the third-harmonic distortion plays a prominent
role in the optimization of the load resistance and the proposed optimization method,
based on Equation (15), is likely to result in more improved output power when compared
with that of the conventional impedance matching technique.
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Figure 7. The optimal load resistances and the matched load resistances at each excitation frequency
are plotted. Ropt1 and Ropt2 are the optimal resistances for beam 1 and beam 2, respectively. Rmat1 and
Rmat2 are the matched resistances for beam 1 and beam 2, respectively. The resistances are calculated
at the excitation frequencies from 11.9 to 17.5 Hz with increments of 0.1 Hz. The third-harmonic
distortions for calculating the optimal resistances were obtained when the excitation amplitude was
6 m/s2.

Figure 8 shows how much RMS power output is improved with the optimal load
resistance obtained by the proposed method, compared to the RMS power output with the
matched resistances. In addition, 1 MΩ was chosen as an unoptimized resistance value,
and the RMS power results calculated with the unoptimized resistance are shown for
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comparisons. In Figure 8, Prms
opt , Prms

mat , and Prms
unopt denote the RMS power outputs evaluated

with the optimal, matched, and unoptimized resistances, respectively. The subscripts 1
and 2 indicate the results for beam 1 and beam 2, respectively. The RMS power output
produced by beam 1 is shown in Figure 8a. For beam 1, the RMS power graphs with the
optimized and matched resistances overlap because as shown in Figure 7, those resistances
had ineffective differences. At the highest excitation frequency, 17.5 Hz, both the RMS
power results with the optimized and matched resistances are improved by 5.93 times
when compared to the RMS power with the unoptimized resistance. On the other hand,
for beam 2, the RMS power output is more improved with the optimal resistances than
with the matched resistances, as shown in Figure 8b. This is more obvious as the excitation
frequency increases owing to the differences between the optimal and matched resistances
in Figure 7. Particularly, at the excitation frequency of 17.5 Hz, the RMS power output
with the optimal resistances is enhanced by 3.40 times relative to the RMS power output
with the unoptimized resistances, whereas the matched resistances achieve a 2.13 times
enhancement. The total RMS power output produced by both of the two piezoelectric
beams are shown in Figure 8c. Because for beam 1 the optimized and matched resistances
showed no difference in the RMS power outputs, the difference between the total power
output with the optimized resistances and the total power output with the matched
resistances originates mainly from beam 2. Resultantly, at the excitation frequency of
17.5 Hz, the total RMS power outputs with the optimized and matched resistances are
improved by 4.06 times and 3.13 times, respectively, relative to the total RMS power with
the unoptimized resistance.
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Figure 8. Root mean square (RMS) power output results of (a) beam 1 and (b) beam 2, and (c) total RMS output power
results of the two beams. The red lines with the stars are the results obtained with the optimal load resistances considering
the third-harmonic distortion. The blue dotted lines are the results obtained by applying the impedance matching technique
considering the fundamental component only. The green lines with the circles are the RMS power output evaluated with the
resistance of 1 MΩ without load resistance optimization. The excitation frequencies are increased from 11.9 Hz to 17.5 Hz
with increments of 0.1 Hz, and the base acceleration was set to be 6 m/s2.

4.4. Improvements in Broadband Performance

Enhancing broadband performance is of importance when designing VEHs [32].
Herein, for quantitative comparisons of broadband performance, average RMS power,
denoted by Ei, is introduced. The average RMS power is evaluated by dividing the area
under the RMS power curve by the excitation frequency range in which interwell motion
occurs. The average RMS power obtained when the resistances are optimized at 17.5 Hz
is denoted by Eopt. Likewise, Emat represents the average RMS power obtained when the
resistances are matched at 17.5 Hz. In addition, for comparison, Eunopt denotes the average
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RMS power obtained with the unoptimized resistances of 1 MΩ. The area under an RMS
power curve is numerically integrated by utilizing Simpson’s 1/3 rule. To investigate the
broadband performance of the 2-DOF MCBEH with respect to changes of load resistances,
the values of the average RMS power were evaluated with variations in the load resistances
of both the beams from 1 to 35 MΩ with increments of 0.5 MΩ.

Figure 9 depicts the simulation results for the broadband performance estimated by
the average RMS power. First of all, it is noted that the average RMS power of beam 1
is practically independent of the variations of the resistance connected to beam 2, and
vice versa. In this regard, for simplification, Figure 9a plots the average RMS power of
beam 1 when the load resistance of beam 2 is set arbitrarily to be 8 MΩ. Likewise, the load
resistance for beam 1 is chosen arbitrarily as 13.5 MΩ in Figure 9b. For the purpose of the
following comparisons, the maximum average RMS power is numerically obtained and
denoted by Emax in Figure 9. As shown in Figure 9a, when the load resistance of beam 1 is
13.5 MΩ, the average RMS power of beam 1 becomes maximized (6.62 times larger than
the unoptimized case with the load resistances of 1 MΩ). In addition, it is observed that
the average RMS power outputs evaluated with the optimized and matched resistances
are almost the same as shown in the inset of Figure 9a. Both the results are in an excellent
agreement with the maximum average RMS result. The optimized average RMS power is
improved by 6.56 times relative to the unoptimized case.
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Figure 9. Average RMS power results for beam 1 and beam 2 are shown in (a,b), respectively, with changing external load
resistances. (c) shows the summation of (a,b). Each resistance varies from 1 MΩ to 35 MΩ with increments of 0.5 MΩ for
the simulations. The average RMS power of beam 1 is assumed to be independent of the load resistance of beam 2, and vice
versa. The load resistance of beam 2 is set to be 8 MΩ for (a), and the load resistance of beam 1 is chosen as 13.5 MΩ for (b).
The magenta triangle marker denotes the maximum average RMS power. The red star marker indicates the average RMS
power obtained when the resistance is optimized at the excitation frequency of 17.5 Hz; on the other hand, the blue square
is obtained with the matched resistances at the same excitation frequency. For comparisons, the average RMS power with
the resistances of 1 MΩ is denoted by the green circle marker.

In Figure 9b for beam 2, when the load resistance of beam 2 is 8 MΩ, the average
RMS power of beam 2 is maximized (3.75 times larger than the unoptimized case). It is
noticeable that the average RMS power estimated with the proposed optimization method
is still in excellent agreement with the numerically obtained one; on the other hand, the
average RMS power estimated with the conventional impedance matching method shows
a poor agreement. The average RMS power outputs with the optimized and matched
resistances are improved by 3.72 times and 2.83 times, respectively, when compared to the
output with the unoptimized resistances. This indicates that it is very important to consider
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the harmonic distortion in interwell oscillation when designing the load resistance of the
2-DOF MCBEH. The value obtained from Equation (15) at the highest excitation frequency
(17.5 Hz in this study) is a good approximation to the optimal load resistance of the 2-DOF
MCBEH for broadband energy harvesting applications. Table 2 summarizes the values of
resistance and improvements in broadband performance relative to the unoptimized case.

Table 2. Summary of the values of the external load resistance and relative improvements in broadband performance.

Method

Beam 1
(Negligible Harmonic Distortion)

Beam 2
(Noticeable Third-Harmonic Distortion)

Resistance (MΩ) Improvement Resistance (MΩ) Improvement

Unoptimized case 1.0 - 1.0 -
Conventional impedance matching 12.0 6.56 times 19.8 2.83 times

Proposed optimization method 11.9 6.56 times 6.8 3.72 times
Numerically obtained maximum 13.5 6.62 times 8.0 3.75 times

Total average RMS power, a sum of the average RMS powers of two beams, is shown in
Figure 9c. The total average RMS power with the optimized resistances (when optimized at
17.5 Hz) is also nearly close to the numerical maximum value. The proposed optimization
method can estimate the optimal load resistance for maximizing the total average RMS
power more accurately than the conventional impedance matching technique. The total
average RMS powers for the optimized and matched cases are improved by 5.28 and
4.88 times, respectively, relative to that of the unoptimized case.

5. Conclusions

The optimization method for the load resistances of the 2-DOF MCBEH was proposed
in this study when high-order harmonics, i.e., harmonic distortions, emerge due to nonlin-
ear magnetic coupling. First, the 2-DOF oscillator model was obtained through a series of
mathematical derivations. The dynamical analysis of the oscillator model was performed
by using the direct numerical integration based on the Runge–Kutta method to investigate
the nonlinear interwell oscillations of the 2-DOF MCBEH. From the dynamic simulation
results, the third-harmonic distortion was found to occur in the interwell oscillation of
the shorter beam of the two piezoelectric beams of the 2-DOF MCBEH. Furthermore, the
frequency-domain analysis of the steady-state response showed that the third-harmonic
distortion became more significant with a higher excitation frequency within the frequency
range of interwell motion. Thus, the third-harmonic distortion was considered to be
important in the optimization process of the external load resistance in this study. The
optimal load resistances for the two piezoelectric beams were estimated by the proposed
optimization process. Subsequently, the results of the power outputs were compared to the
numerically obtained results as well as the results acquired by employing the conventional
impedance matching technique. For both harmonic and swept-sine excitations, the power
outputs with the proposed optimal load resistances were in excellent agreement with the
numerically optimized power outputs. However, the results obtained by the conventional
impedance matching technique were not accurate, and its relative error tended to be
larger at a higher excitation frequency where the effect of the harmonic distortion became
significant. All the simulation results indicated that the proposed optimization method
estimated the optimal load resistances of the 2-DOF MCBEH more accurately than the
conventional impedance matching technique did. The proposed optimization method can
be readily extended and applied to other multi-DOF systems that experience high-order
harmonic distortions.
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