Internet of Things Geosensor Network for Cost-Effective Landslide Early Warning Systems
Abstract
:1. Project Overview [email protected]
1.1. Project Background and Goals
- Socially integrated;
- Spatially integrated;
- Multiscalar;
- Multisectoral;
- Precise;
- Inexpensive;
- Easily replicable.
1.2. Project Area
1.3. Geology and Landslide Processes
2. Landslide Early Warning Systems
2.1. LEWS in Medellín and Colombia
2.2. The Internet of Things and Landslide Monitoring
3. [email protected] Monitoring System
3.1. Monitoring System Layout
- Horizontal Continuous Shear Monitor (CSM) measurement lines and extensometer (EXT);
- Wireless LoRa sensor nodes;
- Piezometers, extensometers and vertical CSM in drillings.
3.2. Measurement Concept for the LoRa Sensor Nodes
3.3. [email protected] LoRa Base Module
3.4. LoRa Sensor Nodes
3.4.1. Infrastructure Node (IN)
3.4.2. Subsurface Node (SN)
3.4.3. Low-Cost Chain Inclinometer (LCI)
3.5. Installation
3.6. Test Site Near Regensburg, Germany
4. Data Processing
4.1. Data Transmission and Storage
4.2. Data Management
4.3. Data Analysis
4.4. Data Dissemination
4.4.1. Short- to Medium Term Hazard Level
4.4.2. Early Warning and Alarms
5. Summary and Outlook
6. Resources
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, H.; Garcia-Ferrari, S.; Medero, G.; Rivera, H.; Caballero, H.; Castro, W.; Abiko, A.; Marinho, F.; Ferreira, K. Learning from Co-Produced Landslide Risk Mitigation Strategies in Low-Income Settlements in Medellín (Colombia) and São Paulo (Brazil); N-AERUS XIX; Department of International Urbanism, University of Stuttgart: Stuttgart, Germany, 2018. [Google Scholar]
- Rengers, F.K.; McGuire, L.A.; Oakley, N.S.; Kean, J.W.; Staley, D.M.; Tang, H. Landslides after wildfire: Initiation, magnitude, and mobility. Landslides 2020, 17, 2631–2641. [Google Scholar] [CrossRef]
- Petley, D.N. On the impact of urban landslides. Geol. Soc. Lond. Eng. Geol. Spec. Publ. 2009, 22, 83–99. [Google Scholar] [CrossRef]
- Samaddar, S.; Tatano, H. Where do Individuals Seek Opinions for Evacuation? A Case Study from Landslide-prone Slum Communities in Mumbai. J. Nat. Disaster Sci. 2015, 36, 13–24. [Google Scholar] [CrossRef][Green Version]
- Alexander, D. Urban landslides. Prog. Phys. Geogr. Earth Environ. 1989, 13, 157–189. [Google Scholar] [CrossRef]
- Anderson, M.B. Metropolitan Areas and Disaster Vulnerability: A Consideration for Developing Countries. In Environmental Management and Urban Vulnerability; Kreimer, A., Munasinghe, M., Eds.; Number 168 in World Bank Discussion Papers; The World Bank: Washington, DC, USA, 1992; pp. 77–92. [Google Scholar]
- Peduzzi, P.; Deichmann, U.; Dao, Q.H.; Herold, C.; Chatenoux, B.; De Bono, A. 2009 Global Assessment Report on Disaster Risk Reduction: Patterns, Trends and Drivers. Available online: https://archive-ouverte.unige.ch/unige:32362 (accessed on 1 March 2021).
- Franco, E.G. The Global Risks Report 2020; Technical Report 15; World Economic Forum: Geneva, Switzerland, 2020. [Google Scholar]
- Aristizábal, E.; Sánchez, O. Spatial and temporal patterns and the socioeconomic impacts of landslides in the tropical and mountainous Colombian Andes. Disasters 2020, 44, 596–618. [Google Scholar] [CrossRef]
- Ruiz Peña, G.L.; Barrera Parrales, L.A.; Gamboa Rodríguez, C.A.; Sandoval Ramírez, J.H. Las Amenazas por Movimientos en Masa de Colombia: Una Visión a Escala 1:100.000, 1st ed.; Servicio Geológico Colombiano: Bogotá, Colombia, 2017. [Google Scholar]
- Sepúlveda, S.A.; Petley, D.N. Regional trends and controlling factors of fatal landslides in Latin America and the Caribbean. Nat. Hazards Earth Syst. Sci. 2015, 15, 1821–1833. [Google Scholar] [CrossRef][Green Version]
- Froude, M.J.; Petley, D.N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef][Green Version]
- Uchimura, T.; Towhata, I.; Wang, L.; Nishie, S.; Yamaguchi, H.; Seko, I.; Qiao, J. Precaution and early warning of surface failure of slopes using tilt sensors. Soils Found. 2015, 55, 1086–1099. [Google Scholar] [CrossRef][Green Version]
- Huggel, C.; Ramirez, J.M.; Calvache, M.; González, H.; Gutierrez, C.; Krebs, R. A landslide early warning system within an integral risk management strategy for the Combeima-Tolima Region, Colombia. In Proceedings of the International Disaster and Risk Conference (IDRC), Global Risk Forum, Davos, Switzerland, 25–29 August 2008. [Google Scholar] [CrossRef]
- Polanco, C.; Bedoya Sanmiguel, G. Compilación y análisis de los desastres naturales reportados en el departamento de Antioquia, exceptuando los municipios del Valle de Aburrá-Colombia, entre 1920–1999. Ing. Cienc. 2005, 1, 45–65. [Google Scholar]
- Aristizábal, E.; Gómez, J. Inventario de emergencias y desastres en el Valle de Aburrá originados por fenómenos naturales y antrópicos en el periodo 1880–2007. Gestión y Ambiente 2007, 10, 17–30. [Google Scholar]
- Werthmann, C.; Echeverri, A.; Elvira Vélez, A. Rehabitar La Ladera: Shifting Ground; Research Report; Universidad EAFIT: Medellín, Colombia, 2012. [Google Scholar]
- Breuninger, T.; Gamperl, M.; Menschik, B.; Thuro, K. First Field Findings and their Geological Interpretations at the Study Site Bello Oriente, Medellín, Colombia (Project [email protected]). In Proceedings of the 13th International Symposium on Landslides, International Society for Soil Mechanics and Geotechnical Engineering, Cartagena, Colombia, 22–26 February 2021. [Google Scholar]
- Ündül, Ö.; Tuğrul, A. On the variations of geo-engineering properties of dunites and diorites related to weathering. Environ. Earth Sci. 2016, 75, 1326. [Google Scholar] [CrossRef]
- Gamperl, M.; Breuninger, T.; Singer, J.; García-Londoño, C.; Menschik, B.; Thuro, K. Development of a Landslide Early Warning System in informal settlements in Medellín, Colombia. In Proceedings of the 13th International Symposium on Landslides, International Society for Soil Mechanics and Geotechnical Engineering, Cartagena, Colombia, 22–26 February 2021. [Google Scholar]
- Cruden, D.; Varnes, D. Landslide Types and Processes. In Landslides: Investigation and Mitigation; Turner, A.K., Schuster, R.L., Eds.; Number 247 in Special Report; Transport Research Board, National Research Council: Washington, DC, USA, 1996. [Google Scholar]
- Guzzetti, F.; Gariano, S.L.; Peruccacci, S.; Brunetti, M.T.; Marchesini, I.; Rossi, M.; Melillo, M. Geographical landslide early warning systems. Earth Sci. Rev. 2020, 200, 102973. [Google Scholar] [CrossRef]
- Piciullo, L.; Calvello, M.; Cepeda, J.M. Territorial early warning systems for rainfall-induced landslides. Earth Sci. Rev. 2018, 179, 228–247. [Google Scholar] [CrossRef]
- Pecoraro, G.; Calvello, M.; Piciullo, L. Monitoring strategies for local landslide early warning systems. Landslides 2019, 16, 213–231. [Google Scholar] [CrossRef]
- Chae, B.G.; Park, H.J.; Catani, F.; Simoni, A.; Berti, M. Landslide prediction, monitoring and early warning: A concise review of state-of-the-art. Geosci. J. 2017, 21, 1033–1070. [Google Scholar] [CrossRef]
- Baroň, I.; Supper, R. Application and reliability of techniques for landslide site investigation, monitoring and early warning—Outcomes from a questionnaire study. Nat. Hazards Earth Syst. Sci. 2013, 13, 3157–3168. [Google Scholar] [CrossRef][Green Version]
- Thuro, K.; Singer, J.; Festl, J.; Wunderlich, T.; Wasmeier, P.; Reith, C.; Heunecke, O.; Glabsch, J.; Schuhbäck, S. New landslide monitoring techniques—Developments and experiences of the alpEWAS project. J. Appl. Geod. 2010, 4, 69–90. [Google Scholar] [CrossRef][Green Version]
- Notti, D.; Cina, A.; Manzino, A.; Colombo, A.; Bendea, I.H.; Mollo, P.; Giordan, D. Low-Cost GNSS Solution for Continuous Monitoring of Slope Instabilities Applied to Madonna Del Sasso Sanctuary (NW Italy). Sensors 2020, 20, 289. [Google Scholar] [CrossRef][Green Version]
- Benoit, L.; Briole, P.; Martin, O.; Thom, C.; Malet, J.P.; Ulrich, P. Monitoring landslide displacements with the Geocube wireless network of low-cost GPS. Eng. Geol. 2015, 195, 111–121. [Google Scholar] [CrossRef]
- Dixon, N.; Smith, A.; Flint, J.A.; Khanna, R.; Clark, B.; Andjelkovic, M. An acoustic emission landslide early warning system for communities in low-income and middle-income countries. Landslides 2018, 15, 1631–1644. [Google Scholar] [CrossRef][Green Version]
- Fernandez-Steeger, T.; Arnhardt, C.; Walter, K.; Haß, S.E.; Niemeyer, F.; Nakaten, B.; Homfeld, S.D.; Asch, K.; Azzam, R.; Bill, R.; et al. SLEWS-a prototype system for flexible real time monitoring of landslides: Using an open spatial data infrastructure and wireless sensor networks. Geotechnol. Sci. Rep. 2009, 13, 3–15. [Google Scholar]
- IDEAM—Instituto de Hidrología, Meteorología y Estudios Ambientales. Pronóstico de la Amenaza Diaria por Deslizamientos. Available online: www.pronosticosyalertas.gov.co/web/pronosticos-y-alertas/pronostico-de-la-amenaza-diaria-por-deslizamientos (accessed on 1 March 2021).
- Thiebes, B. Landslide Analysis and Early Warning Systems: Local and Regional Case Study in the Swabian Alb, Germany; Springer Theses; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Huggel, C.; Khabarov, N.; Obersteiner, M.; Ramírez, J.M. Implementation and integrated numerical modeling of a landslide early warning system: A pilot study in Colombia. Nat. Hazards 2010, 52, 501–518. [Google Scholar] [CrossRef]
- Gutiérrez Alvis, D.E.; Bornachera Zarate, L.S.; Mosquera Palacios, D.J. Sistema de alerta temprana por movimiento en masa inducido por lluvia para Ciudad Bolívar (Colombia). Rev. Ing. Solidar. 2018, 14. [Google Scholar] [CrossRef][Green Version]
- Aristizábal, E.; Gamboa, M.F.; Leoz, F.J. Sistema de Alerta Temprana por Movimientos en Masa Inducidos por Lluvia para el Valle de Aburrá, Colombia. Rev. EIA 2010, 13, 155–169. [Google Scholar]
- Lueth, K.L. Why the Internet of Things is called Internet of Things: Definition, History, Disambiguation. Available online: https://iot-analytics.com/internet-of-things-definition/ (accessed on 1 March 2021).
- Oguz, E.A.; Robinson, K.; Depina, I.; Thakur, V. IoT-Based Strategies for Risk Management of Rainfall-Induced Landslides: A Review. In Proceedings of the 7th International Symposium on Geotechnical Safety and Risk (ISGSR 2019), Taipei, Taiwan, 11–13 December 2019. [Google Scholar] [CrossRef]
- Cecílio, J.; Ferreira, P.M.; Casimiro, A. Evaluation of LoRa Technology in Flooding Prevention Scenarios. Sensors 2020, 20, 4034. [Google Scholar] [CrossRef]
- LoRa Alliance. LoRaWAN™ 1.0.3 Specification. Available online: https://lora-alliance.org/lorawan-for-developers (accessed on 1 March 2021).
- Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express 2019, 5, 1–7. [Google Scholar] [CrossRef]
- Centenaro, M.; Vangelista, L.; Zanella, A.; Zorzi, M. Long-range communications in unlicensed bands: The rising stars in the IoT and smart city scenarios. IEEE Wirel. Commun. 2016, 23, 60–67. [Google Scholar] [CrossRef][Green Version]
- Dini, B.; Bennett, G.; Franco, A.; Whitworth, M.R.Z.; Senn, A.; Cook, K. Monitoring boulder movement using the Internet of Things: Towards a landslide early warning system. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 4–8 May 2020; p. EGU2020-17392. [Google Scholar] [CrossRef]
- Moulat, M.E.; Debauche, O.; Mahmoudi, S.; Brahim, L.A.; Manneback, P.; Lebeau, F. Monitoring System Using Internet of Things For Potential Landslides. Procedia Comput. Sci. 2018, 134, 26–34. [Google Scholar] [CrossRef]
- Azzam, R.; Fernandez-Steeger, T.M.; Arnhardt, C.; Shou, K.J. Monitoring of landslides and infrastructures with wireless sensor networks in an earthquake environment. In Proceedings of the 5th International Conference on Earthquake GeotechnicalEngineering, Santiago, Chile, 1–13 January 2011. [Google Scholar]
- Duc-Tan, T.; Dinh-Chinh, N.; Duc-Nghia, T.; Duc-Tuyen, T. Development of a Rainfall-Triggered Landslide System using Wireless Accelerometer Network. Int. J. Adv. Comput. Technol. 2015, 7, 14–24. [Google Scholar]
- De Capua, C.; Lugarà, M.; Morello, R. A Smart-Sensor Based on MEMS Technology for Monitoring Landslides. In Proceedings of the First National Conference 265 on Sensors, Rome, Italy, 15–17 August 2012. [Google Scholar]
- Tu, R.; Wang, R.; Ge, M.; Walter, T.R.; Ramatschi, M.; Milkereit, C.; Bindi, D.; Dahm, T. Cost-effective monitoring of ground motion related to earthquakes, landslides, or volcanic activity by joint use of a single-frequency GPS and a MEMS accelerometer. Geophys. Res. Lett. 2013, 40, 3825–3829. [Google Scholar] [CrossRef][Green Version]
- Smethurst, J.A.; Smith, A.; Uhlemann, S.; Wooff, C.; Chambers, J.; Hughes, P.; Lenart, S.; Saroglou, H.; Springman, S.M.; Löfroth, H.; et al. Current and future role of instrumentation and monitoring in the performance of transport infrastructure slopes. Q. J. Eng. Geol. Hydrogeol. 2017, 50, 271–286. [Google Scholar] [CrossRef][Green Version]
- Ramesh, M.V. Real-Time Wireless Sensor Network for Landslide Detection. In Proceedings of the 2009 Third International Conference on Sensor Technologies and Applications, Athens, Greece, 9–10 February 2009; pp. 405–409. [Google Scholar] [CrossRef]
- Hons, M.; Stewart, R.; Lawton, D.; Bertram, M. Ground motion through geophones and MEMS accelerometers: Sensor comparison in theory, modeling, and field data. In SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Tulsa, OK, USA, 2007. [Google Scholar] [CrossRef][Green Version]
- Abraham, M.T.; Satyam, N.; Pradhan, B.; Alamri, A.M. IoT-Based Geotechnical Monitoring of Unstable Slopes for Landslide Early Warning in the Darjeeling Himalayas. Sensors 2020, 20, 2611. [Google Scholar] [CrossRef] [PubMed]
- Cmielewski, B.; Kontny, B.; Ćmielewski, Kazimierz. Use of low-cost MEMS technology in early warning system against landslide threats. Acta Geodyn. Geomater. 2013, 10, 485–490. [Google Scholar] [CrossRef]
- Yang, Z.; Shao, W.; Qiao, J.; Huang, D.; Tian, H.; Lei, X.; Uchimura, T. A Multi-Source Early Warning System of MEMS Based Wireless Monitoring for Rainfall-Induced Landslides. Appl. Sci. 2017, 7, 1234. [Google Scholar] [CrossRef][Green Version]
- Chaturvedi, P.; Srivastava, S.; Kaur, P.B. Landslide Early Warning System Development Using Statistical Analysis of Sensors’ Data at Tangni Landslide, Uttarakhand, India. In Proceedings of Sixth International Conference on Soft Computing for Problem Solving; Deep, K., Bansal, J.C., Das, K.N., Lal, A.K., Garg, H., Nagar, A.K., Pant, M., Eds.; Springer: Singapore, 2017; pp. 259–270. [Google Scholar]
- Giorgetti, A.; Lucchi, M.; Tavelli, E.; Barla, M.; Gigli, G.; Casagli, N.; Chiani, M.; Dardari, D. A Robust Wireless Sensor Network for Landslide Risk Analysis: System Design, Deployment, and Field Testing. IEEE Sensors J. 2016, 16, 6374–6386. [Google Scholar] [CrossRef]
- Gian, Q.A.; Tran, D.T.; Nguyen, D.C.; Nhu, V.H.; Tien Bui, D. Design and implementation of site-specific rainfall-induced landslide early warning and monitoring system: A case study at Nam Dan landslide (Vietnam). Geomat. Nat. Hazards Risk 2017, 8, 1978–1996. [Google Scholar] [CrossRef]
- Gronz, O.; Hiller, P.H.; Wirtz, S.; Becker, K.; Iserloh, T.; Seeger, M.; Brings, C.; Aberle, J.; Casper, M.C.; Ries, J.B. Smartstones: A small 9-axis sensor implanted in stones to track their movements. CATENA 2016, 142, 245–251. [Google Scholar] [CrossRef][Green Version]
- Caviezel, A.; Schaffner, M.; Cavigelli, L.; Niklaus, P.; Buhler, Y.; Bartelt, P.; Magno, M.; Benini, L. Design and Evaluation of a Low-Power Sensor Device for Induced Rockfall Experiments. IEEE Trans. Instrum. Meas. 2018, 67, 767–779. [Google Scholar] [CrossRef][Green Version]
- Dikshit, A.; Satyam, D.N.; Towhata, I. Early warning system using tilt sensors in Chibo, Kalimpong, Darjeeling Himalayas, India. Nat. Hazards 2018, 94, 727–741. [Google Scholar] [CrossRef]
- Uchimura, T.; Towhata, I.; Lan Anh, T.T.; Fukuda, J.; Bautista, C.J.B.; Wang, L.; Seko, I.; Uchida, T.; Matsuoka, A.; Ito, Y.; et al. Simple monitoring method for precaution of landslides watching tilting and water contents on slopes surface. Landslides 2010, 7, 351–357. [Google Scholar] [CrossRef]
- Xie, J.; Uchimura, T.; Chen, P.; Liu, J.; Xie, C.; Shen, Q. A relationship between displacement and tilting angle of the slope surface in shallow landslides. Landslides 2019, 16, 1243–1251. [Google Scholar] [CrossRef]
- Singer, J.; Thuro, K.; Gamperl, M.; Breuninger, T.; Menschik, B. Technical Concepts for an Early Warning System for Rainfall Induced Landslides in Informal Settlements. In Understanding and Reducing Landslide Disaster Risk: Volume 3 Monitoring and Early Warning; Casagli, N., Tofani, V., Sassa, K., Bobrowsky, P.T., Takara, K., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 209–215. [Google Scholar] [CrossRef]
- Thuro, K.; Singer, J.; Menschik, B.; Breuninger, T.; Gamperl, M. Development of a Landslide Early Warning System in informal settlements in Medellín, Colombia. Geomech. Tunn. 2020, 13, 103–115. [Google Scholar] [CrossRef]
- Singer, J. Monitoring von Hangbewegungen mit dem Continuous Shear Monitor (CSM)—Anwendungsbeispiele. In Tagungsband zu den Fachsektionstagen Geotechnik; Deutsche Gesellschaft für Geotechnik e.V., Ed.; Deutsche Gesellschaft für Geotechnik e.V.: Würzburg, Germany, 2019; pp. 42–46. [Google Scholar]
- Singer, J.; Thuro, K.; Festl, J. Development and testing of a time domain reflectometry (TDR) monitoring system for subsurface deformations. In Proceedings of the SRM International Symposium-EUROCK 2010, Lausanne, Switzerland, 15–18 June 2010. [Google Scholar]
- Qiao, S.; Feng, C.; Yu, P.; Tan, J.; Uchimura, T.; Wang, L.; Tang, J.; Shen, Q.; Xie, J. Investigation on Surface Tilting in the Failure Process of Shallow Landslides. Sensors 2020, 20, 2662. [Google Scholar] [CrossRef] [PubMed]
- Festl, J.; Thuro, K. Determination of thresholds at the Aggenalm landslide (Bayrischzell, Germany) by time series analysis and numerical modeling. In Landslides and Engineered Slopes. Experience, Theory and Practice; Aversa, S., Cascini, L., Picarelli, L., Scavia, C., Eds.; CRC Press: London, Germany, 2016; pp. 909–916. [Google Scholar]
Type | Depth [m] | Pipe | Installation | Data Quality | Cost |
---|---|---|---|---|---|
IN | - | - | ++ | RD; Wide range of sensors; | ∼150 € |
SN | <2.5 | Steel | + | SQ (Tilt sensor); GW | ∼200 € |
LCI | 3–6 | PVC | - | AD (Tilt sensor); GW | ∼250 € |
Chain Inclinometer | >5 | PVC/Alu | – | AD | >>5000 € |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gamperl, M.; Singer, J.; Thuro, K. Internet of Things Geosensor Network for Cost-Effective Landslide Early Warning Systems. Sensors 2021, 21, 2609. https://doi.org/10.3390/s21082609
Gamperl M, Singer J, Thuro K. Internet of Things Geosensor Network for Cost-Effective Landslide Early Warning Systems. Sensors. 2021; 21(8):2609. https://doi.org/10.3390/s21082609
Chicago/Turabian StyleGamperl, Moritz, John Singer, and Kurosch Thuro. 2021. "Internet of Things Geosensor Network for Cost-Effective Landslide Early Warning Systems" Sensors 21, no. 8: 2609. https://doi.org/10.3390/s21082609