# A System in Package Based on a Piezoelectric Micromachined Ultrasonic Transducer Matrix for Ranging Applications

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. System Overview

#### Fabrication Process

## 3. Design, Fabrication and Characterization of the PMUT Matrix

#### 3.1. PMUT Equivalent Circuit

#### 3.2. Simulations

#### 3.3. Characterization

## 4. Design of the CMOS Chip

#### Design of the High-Voltage Pulser

## 5. Measurement Results

#### Design of the Transimpedance Amplifier

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Jung, J.; Lee, W.; Kang, W.; Shin, E.; Ryu, J.; Choi, H. Review of piezoelectric micromachined ultrasonic transducers and their applications. J. Micromech. Microeng.
**2017**, 27, 113001. [Google Scholar] [CrossRef] - Tang, H.Y.; Lu, Y.; Jiang, X.; Ng, E.J.; Tsai, J.M.; Horsley, D.A.; Boser, B.E. 3-D ultrasonic fingerprint sensor-on-a-chip. IEEE J. Solid-State Circuits
**2016**, 51, 2522–2533. [Google Scholar] [CrossRef] - Zahorian, J.; Hochman, M.; Xu, T.; Satir, S.; Gurun, G.; Karaman, M.; Degertekin, F.L. Monolithic CMUT-on-CMOS integration for intravascular ultrasound applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control
**2011**, 58, 2659–2667. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Xu, T.; Zhao, L.; Jiang, Z.; Guo, S.; Li, Z.; Yang, P.; Sun, L.; Luo, G.; Zhang, L. Array design of piezoelectric micromachined ultrasonic transducers with low crosstalk and high emission performance. IEEE Trans. Ultrason. Ferroelectr. Freq. Control
**2019**, 67, 789–800. [Google Scholar] [CrossRef] [PubMed] - Bayram, B.; Oralkan, O.; Ergun, A.S.; Hæggstrom, E.; Yaralioglu, G.G.; Khuri-Yakub, B.T. Capacitive micromachined ultrasonic transducer design for high power transmission. IEEE Trans. Ultrason. Ferroelectr. Freq. Control
**2005**, 52, 326–339. [Google Scholar] [CrossRef] [PubMed] - Qiu, Y.; Gigliotti, J.V.; Wallace, M.; Griggio, F.; Demore, C.E.; Cochran, S.; Trolier-McKinstry, S. Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging. Sensors
**2015**, 15, 8020–8041. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Przybyla, R.; Flynn, A.; Jain, V.; Shelton, S.; Guedes, A.; Izyumin, I.; Horsley, D.; Boser, B. A micromechanical ultrasonic distance sensor with> 1 meter range. In Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China, 5–9 June 2011; pp. 2070–2073. [Google Scholar]
- Feng, G.H.; Liu, H.J. Piezoelectric Micromachined Ultrasonic Transducers with a Cost-Effective Bottom-Up Fabrication Scheme for Millimeter-Scale Range Finding. Sensors
**2019**, 19, 4696. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Dausch, D.E.; Gilchrist, K.H.; Carlson, J.B.; Hall, S.D.; Castellucci, J.B.; von Ramm, O.T. In vivo real-time 3-D intracardiac echo using PMUT arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control
**2014**, 61, 1754–1764. [Google Scholar] [CrossRef] [PubMed] - Dausch, D.E.; Gilchrist, K.H.; Carlson, J.R.; Castellucci, J.B.; Chou, D.R.; von Ramm, O.T. Improved pulse-echo imaging performance for flexure-mode pMUT arrays. In Proceedings of the 2010 IEEE International Ultrasonics Symposium, San Diego, CA, USA, 11–14 October 2010; pp. 451–454. [Google Scholar]
- Dangi, A.; Cheng, C.; Agrawal, S.; Tiwari, S.; Datta, G.R.; Benoit, R.; Pratap, R.; Trolier-McKinstry, S.; Kothapalli, S.R. A Photoacoustic Imaging Device using Piezoelectric Micromachined Ultrasound Transducers (PMUTs). IEEE Trans. Ultrason. Ferroelectr. Freq. Control
**2019**, 67, 801–809. [Google Scholar] [CrossRef] [PubMed] - Przybyla, R.J.; Tang, H.Y.; Shelton, S.E.; Horsley, D.A.; Boser, B.E. 12.1 3D ultrasonic gesture recognition. In Proceedings of the 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 9–13 February 2014; pp. 210–211. [Google Scholar]
- Yin, X.; Zhu, Y.; Hu, J. 3D Fingerprint Recognition based on Ridge-valley-guided 3D Reconstruction and 3D Topology Polymer Feature Extraction. IEEE Trans. Pattern Anal. Mach. Intell.
**2019**, 43, 1085–1091. [Google Scholar] [CrossRef] [PubMed] - Robichaud, A.; Deslandes, D.; Cicek, P.V.; Nabki, F. Electromechanical Tuning of Piecewise Stiffness and Damping for Long-Range and High-Precision Piezoelectric Ultrasonic Transducers. J. Microelectromech. Syst.
**2020**, 29, 1189–1198. [Google Scholar] [CrossRef] - Robichaud, A.; Cicek, P.V.; Deslandes, D.; Nabki, F. Frequency tuning technique of piezoelectric ultrasonic transducers for ranging applications. J. Microelectromech. Syst.
**2018**, 27, 570–579. [Google Scholar] [CrossRef] - Robichaud, A.; Deslandes, D.; Cicek, P.V.; Nabki, F. A novel topology for process variation-tolerant piezoelectric micromachined ultrasonic transducers. J. Microelectromech. Syst.
**2018**, 27, 1204–1212. [Google Scholar] [CrossRef] - Cowen, A. PiezoMUMPsTM Design Handbook. 2013. Available online: http://www.memscapinc.com/__data/assets/pdf_file/0020/5915/PiezoMUMPs.DR.1.3a.pdf (accessed on 5 April 2021).
- Bhugra, H.; Piazza, G. Piezoelectric MEMS Resonators; Springer International Publishing: New York, NY, USA, 2017. [Google Scholar]
- Butler, J.L.; Sherman, C.H. Transducers and Arrays for Underwater Sound; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Smyth, K.; Kim, S.G. Experiment and simulation validated analytical equivalent circuit model for piezoelectric micromachined ultrasonic transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control
**2015**, 62, 744–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]

**Figure 5.**COMSOL simulation. (

**a**) model used for the simulations and (

**b**) simulation results of acoustic pressure level in dBV.

**Figure 9.**Measurement results: (

**a**) Frequency domain measurements of the RGC TIA, (

**b**) Time domain measurements of the high-voltage pulser.

**Figure 12.**Ranging measurement results in the air for distances of (

**a**) 2 mm, (

**b**) 4 mm, (

**c**) 6 mm, (

**d**) 8 mm, (

**e**) 10 mm, and (

**f**) 12 mm.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Robichaud, A.; Deslandes, D.; Cicek, P.-V.; Nabki, F.
A System in Package Based on a Piezoelectric Micromachined Ultrasonic Transducer Matrix for Ranging Applications. *Sensors* **2021**, *21*, 2590.
https://doi.org/10.3390/s21082590

**AMA Style**

Robichaud A, Deslandes D, Cicek P-V, Nabki F.
A System in Package Based on a Piezoelectric Micromachined Ultrasonic Transducer Matrix for Ranging Applications. *Sensors*. 2021; 21(8):2590.
https://doi.org/10.3390/s21082590

**Chicago/Turabian Style**

Robichaud, Alexandre, Dominic Deslandes, Paul-Vahé Cicek, and Frederic Nabki.
2021. "A System in Package Based on a Piezoelectric Micromachined Ultrasonic Transducer Matrix for Ranging Applications" *Sensors* 21, no. 8: 2590.
https://doi.org/10.3390/s21082590