Developing a Modern Greenhouse Scientific Research Facility—A Case Study
Abstract
:1. Introduction
2. Related Work
2.1. Sensors
2.2. Data Acquisition
2.3. Big Data Collection and Deep Learning
3. System Design and Architecture
3.1. Sensor Selection
- Energy efficiency and power supply unit (PSU) validity sensor node
- External environment sensor node
- Internal environment and leaf sensor node
- Nutrient sensor node emerged in the prepared solution
- Nutrient sensor node emerged in the floating system
3.2. Sensor Placement
3.3. Data Sampling
3.4. Data Collection
3.5. Cloud Data Storage and Analysis
3.6. Deep Neural Network Model
3.7. Implementation Cost Analysis
4. Experimental Findings
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masoud, S.; Chowdhury, B.D.B.; Son, Y.J.; Kubota, C.; Tronstad, R. Simulation based optimization of resource allocation and facility layout for vegetable grafting operations. Comput. Electron. Agric. 2019, 163, 104845. [Google Scholar] [CrossRef]
- Maksimovic, M. Greening the Future: Green Internet of Things (G-IoT) as a Key Technological Enabler of Sustainable Development. In Internet of Things and Big Data Analytics Toward Next-Generation Intelligence. Studies in Big Data; Springer: Cham, Switzerland, 2018; Volume 30. [Google Scholar] [CrossRef]
- Somov, A.; Shadrin, D.; Fastovets, I.; Nikitin, A.; Matveev, S.; Hrinchuk, O. Pervasive Agriculture: IoT-Enabled Greenhouse for Plant Growth Control. IEEE Pervasive Comput. 2018, 17, 65–75. [Google Scholar] [CrossRef]
- Guillen, M.A.; Llanes, A.; Imbernon, B.; Martinez-Espana, R.; Bueno-Crespo, A.; Cano, J.-C.; Cecilia, J.M. Performance evaluation of edge-computing platforms for the prediction of low temperatures in agriculture using deep learning. J. Supercomput. 2021. [Google Scholar] [CrossRef]
- Ayaz, M.; Ammad-Uddin, M.; Sharif, Z.; Mansour, A.; Aggoune, E.M. Internet-of-Things (IoT)-Based Smart Agriculture: Toward Making the Fields Talk. IEEE Access 2019, 7, 129551–129583. [Google Scholar] [CrossRef]
- Kochhar, A.; Kumar, N. Wireless sensor networks for greenhouses: An end-to-end review. Comput. Electron. Agric. 2019, 163, 104877. [Google Scholar] [CrossRef]
- Kramberger, T.; Potočnik, B. LSUN-Stanford Car Dataset: Enhancing Large-Scale Car Image Datasets Using Deep Learning for Usage in GAN Training. Appl. Sci. 2020, 10, 4913. [Google Scholar] [CrossRef]
- Ghosh, A.; Chakraborty, D.; Law, A. Artificial intelligence in Internet of things. CAAI Trans. Intell. Technol. 2018, 3, 208–218. [Google Scholar] [CrossRef]
- Story, D.; Kacira, M. Design and implementation of a computer vision-guided greenhouse crop diagnostics system. Mach. Vis. Appl. 2015, 26, 495–506. [Google Scholar] [CrossRef]
- URTICA—BioFuture. 2020. Available online: http://urtica.agr.hr/en/naslovnica-english/ (accessed on 25 December 2020).
- Wei, Y.; Li, W.; An, D.; Li, D.; Jiao, Y.; Wei, Q. Equipment and Intelligent Control System in Aquaponics: A Review. IEEE Access 2019, 7, 169306–169326. [Google Scholar] [CrossRef]
- Saiz-Rubio, V.; Rovira-Más, F. From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management. Agronomy 2020, 10, 207. [Google Scholar] [CrossRef] [Green Version]
- Miranda, J.; Ponce, P.; Molina, A.; Wright, P. Sensing, smart and sustainable technologies for Agri-Food 4.0. Comput. Ind. 2019, 108, 21–36. [Google Scholar] [CrossRef]
- Wei, L.Y.; Sheng-Kai, T.; Jyun-Kai, L.; Ta-Hsien, H. Delopoing Smart Home Applications. Mob. Netw. Appl. 2020. [Google Scholar] [CrossRef]
- Bersani, C.; Ouammi, A.; Sacile, R.; Zero, E. Model Predictive Control of Smart Greenhouses as the Path towards Near Zero Energy Consumption. Energies 2020, 13, 3647. [Google Scholar] [CrossRef]
- Oliver, P.; Kostas, B.; Calvo, R.A.; Papavassiliou, S. (Eds.) Mobile Networks and Management; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Wang, L.; Wang, B. Construction of greenhouse environment temperature adaptive model based on parameter identification. Comput. Electron. Agric. 2020, 174, 105477. [Google Scholar] [CrossRef]
- Subahi, A.F.; Bouazza, K.E. An Intelligent IoT-Based System Design for Controlling and Monitoring Greenhouse Temperature. IEEE Access 2020, 8, 125488–125500. [Google Scholar] [CrossRef]
- Castañeda-Miranda, A.; Castaño, V. Smart frost measurement for anti-disaster intelligent control in greenhouses via embedding IoT and hybrid AI methods. Measurement 2020, 164, 108043. [Google Scholar] [CrossRef]
- Villarreal-Guerrero, F.; Pinedo-Alvarez, A.; Flores-Velázquez, J. Control of greenhouse-air energy and vapor pressure deficit with heating, variable fogging rates and variable vent configurations: Simulated effectiveness under varied outside climates. Comput. Electron. Agric. 2020, 174, 105515. [Google Scholar] [CrossRef]
- Vamvakas, P.; Tsiropoulou, E.E.; Vomvas, M.; Papavassiliou, S. Adaptive power management in wireless powered communication networks: A user-centric approach. In Proceedings of the 2017 IEEE 38th Sarnoff Symposium, Newark, NJ, USA, 18–20 September 2017. [Google Scholar] [CrossRef]
- DFRobot, Gravity: Analog Capacitive Soil Moisture Sensor-Corrosion Resistant SEN-0193. 2019. Available online: https://www.dfrobot.com/product-1385.html (accessed on 14 December 2020).
- Angelopoulos, C.M.; Filios, G.; Nikoletseas, S.; Raptis, T. Keeping Data at the Edge of Smart Irrigation Networks: A Case Study in Strawberry Greenhouses. Comput. Netw. 2019, 167, 107039. [Google Scholar] [CrossRef]
- Dong, Z.; Men, Y.; Liu, Z.; Li, J.; Ji, J. Application of chlorophyll fluorescence imaging technique in analysis and detection of chilling injury of tomato seedlings. Comput. Electron. Agric. 2020, 168, 105109. [Google Scholar] [CrossRef]
- Malewski, T.; Brzezińska, B.; Belbahri, L.; Oszako, T. Role of avian vectors in the spread of Phytophthora species in Poland. Eur. J. Plant Pathol. 2019, 155, 1363–1366. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Jin, J.; Song, Z.; Wang, J.; Zhang, L.; Rehman, T.U.; Ma, D.; Carpenter, N.R.; Tuinstra, M.T. LeafSpec: An accurate and portable hyperspectral corn leaf imager. Comput. Electron. Agric. 2020, 169, 105209. [Google Scholar] [CrossRef]
- Ma, D.; Wang, L.; Zhang, L.; Song, Z.; Rehman, T.U.; Jin, J. Stress Distribution Analysis on Hyperspectral Corn Leaf Images for Improved Phenotyping Quality. Sensors 2020, 20, 3659. [Google Scholar] [CrossRef] [PubMed]
- De Castro, A.; Madalozzo, G.A.; Trentin, N.S.; Costa, R.C.; Calvete, E.O.; Spalding, L.E.S.; Rieder, R. BerryIP embedded: An embedded vision system for strawberry crop. Comput. Electron. Agric. 2020, 173, 105354. [Google Scholar] [CrossRef]
- Yu, Z.; Ustin, S.L.; Zhang, Z.; Liu, H.; Zhang, X.; Meng, X.; Cui, Y.; Guan, H. Estimation of a New Canopy Structure Parameter for Rice Using Smartphone Photography. Sensors 2020, 20, 4011. [Google Scholar] [CrossRef] [PubMed]
- Ranjeeta, A.; Cheng, L.; Kirby, K.; Krishna, N. A low-cost smartphone controlled sensor based on image analysis for estimating whole-plant tissue nitrogen (N) content in floriculture crops. Comput. Electron. Agric. 2020, 169, 105173. [Google Scholar] [CrossRef]
- Hassanijalilian, O.; Igathinathane, C.; Doetkott, C.; Bajwa, S.; Nowatzki, J.; Esmaeili, S.A.H. Chlorophyll estimation in soybean leaves inffield with smartphone digital imaging and machine learning. Comput. Electron. Agric. 2020, 174, 105433. [Google Scholar] [CrossRef]
- Chung, S.; Breshears, L.E.; Yoon, J. Smartphone near infrared monitoring of plant stress. Comput. Electron. Agric. 2018, 154, 93–98. [Google Scholar] [CrossRef]
- Tao, M.; Huang, X.; Liu, C.; Deng, R.; Liang, K.; Qi, L. Smartphone-based detection of leaf color levels in rice plants. Comput. Electron. Agric. 2020, 173, 105431. [Google Scholar] [CrossRef]
- Danh, D.N.H.; Vincent, P.; Chi, P.; Rocio, V.; Khoa, D.; Christian, N. Night-based hyperspectral imaging to study association of horticultural crop leaf reflectance and nutrient status. Comput. Electron. Agric. 2020, 173, 105458. [Google Scholar] [CrossRef]
- Liu, B.; Yue, Y.; Li, R.; Shen, W.; Wang, K. Plant Leaf Chlorophyll Content Retrieval Based on a Field Imaging Spectroscopy System. Sensors 2014, 14, 19910–19925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Patricio, M.; Aguilar-González, A.; Camas-Anzueto, J.L.; Navarro, N.A.M.; Grajales-Coutiño, R. An FPGA-based smart camera for accurate chlorophyll estimations. Int. J. Circuit Theory Appl. 2018, 46, 1663–1674. [Google Scholar] [CrossRef] [Green Version]
- Brambilla, M.; Romano, E.; Buccheri, M.; Cutini, M.; Toscano, P.; Cacini, S.; Massa, D.; Ferri, S.; Monarca, D.; Fedrizzi, M.; et al. Application of a low-cost RGB sensor to detect basil (Ocimum basilicum L.) nutritional status at pilot scale level. Precis. Agric. 2020. [Google Scholar] [CrossRef]
- Ye, X.; Abe, S.; Zhang, S.; Yoshimura, H. Hiroyuki. Rapid and non-destructive assessment of nutritional status in apple trees using a new smartphone-based wireless crop scanner system. Comput. Electron. Agric. 2020, 173, 105417. [Google Scholar] [CrossRef]
- Kangji, L.; Zhengdao, S.; Wenping, X.; Xu, C.; Hanping, M.; Gang, T. A fast modeling and optimization scheme for greenhouse environmental system using proper orthogonal decomposition and multi-objective genetic algorithm. Comput. Electron. Agric. 2020, 168, 105096. [Google Scholar] [CrossRef]
- Chen, X. Research on Data Interpolation Model with Missing Data for Intelligent Greenhouse Control. In Proceedings of the 2019 International Conference on Robots & Intelligent System (ICRIS), Haikou, China, 15–16 June 2019. [Google Scholar] [CrossRef]
- Wu, H.; Li, Q.; Zhu, H.; Han, X.; Li, Y.; Yang, B. Directional sensor placement in vegetable greenhouse for maximizing target coverage without occlusion. Wirel. Netw. 2020, 26, 4677–4687. [Google Scholar] [CrossRef]
- Atefi, A.; Ge, Y.; Pitla, S.; Schnable, J. In vivo human-like robotic phenotyping of leaf traits in maize and sorghum in greenhouse. Comput. Electron. Agric. 2019, 163, 104854. [Google Scholar] [CrossRef]
- Geng, X.; Zhang, Q.; Wei, Q.; Zhang, T.; Cai, Y.; Liang, Y.; Sun, X. A Mobile Greenhouse Environment Monitoring System Based on the Internet of Things. IEEE Access 2019, 7, 135832–135844. [Google Scholar] [CrossRef]
- Ma, D.; Carpenter, N.; Maki, H.; Rehman, T.U.; Tuinstra, M.R.; Jin, J. Greenhouse environment modeling and simulation for microclimate control. Comput. Electron. Agric. 2019, 162, 134–142. [Google Scholar] [CrossRef]
- Uyeh, D.D.; Ramlan, F.W.; Mallipeddi, R.; Park, T.; Woo, S.; Kim, J.; Kim, Y.; Ha, Y. Evolutionary Greenhouse Layout Optimization for Rapid and Safe Robot Navigation. IEEE Access 2019, 7, 88472–88480. [Google Scholar] [CrossRef]
- Nissimov, S.; Goldberger, J.; Alchanatis, V. Obstacle detection in a greenhouse environment using the Kinect sensor. Comput. Electron. Agric. 2015, 113, 104–115. [Google Scholar] [CrossRef]
- Bontsema, J.; van Henten, E.J.; Gieling, T.H.; Swinkels, G.L.A.M. The effect of sensor errors on production and energy consumption in greenhouse horticulture. Comput. Electron. Agric. 2011, 79, 63–66. [Google Scholar] [CrossRef]
- Pratim, R.P. Internet of Things for Smart Agriculture: Technologies, Practices and Future Direction. J. Ambient. Intell. Smart Environ. 2017, 9, 395–420. [Google Scholar] [CrossRef]
- Kinjal, A.R.; Patel, B.S.; Bhatt, C.C. Smart Irrigation: Towards Next Generation Agriculture. In Internet of Things and Big Data Analytics Toward Next-Generation Intelligence; Springer: Cham, Switzerland, 2018; Volume 30. [Google Scholar] [CrossRef]
- Mishra, B.; Kertesz, A. The Use of MQTT in M2M and IoT Systems: A Survey. IEEE Access 2020. [Google Scholar] [CrossRef]
- Dobrescu, R.; Merezeanu, D.; Mocanu, S. Context-aware control and monitoring system with IoT and cloud support. Comput. Electron. Agric. 2019, 160, 91–99. [Google Scholar] [CrossRef]
- Yang, J.; Liu, M.; Lu, J.; Miao, Y.; Hossain, M.A.; Alhamid, M.F. Botanical Internet of Things: Toward Smart Indoor Farming by Connecting People, Plant, Data and Clouds. Mob. Netw. Appl. 2018, 23, 188–202. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. Wireless sensor networks: A survey. Comput. Netw. 2002, 38, 393–422. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Duan, J. Design and Simulation of a Wireless Sensor Network Greenhouse-Monitoring System Based on 3G Network Communication. Int. J. Online Eng. (iJOE) 2016, 12, 48. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Xie, Y.; Shao, L. Simulation of the Core Technology of a Greenhouse-Monitoring System Based on a Wireless Sensor Network. Int. J. Online Eng. (iJOE) 2016, 12, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Astillo, P.V.; Kim, J.; Sharma, V.; You, I. SGF-MD: Behavior Rule Specification-Based Distributed Misbehavior Detection of Embedded IoT Devices in a Closed-Loop Smart Greenhouse Farming System. IEEE Access 2020, 8, 196235–196252. [Google Scholar] [CrossRef]
- Kocian, A.; Massa, D.; Cannazzaro, S.; Incrocci, L.; Milazzo, P.; Chessa, S.; Ceccanti, C. Dynamic Bayesian network for crop growth prediction in greenhouses. Comput. Electron. Agric. 2020, 160, 105167. [Google Scholar] [CrossRef]
- Lekbangpong, N.; Muangprathub, J.; Srisawat, T.; Wanichsombat, A. Precise Automation and Analysis of Environmental Factor Effecting on Growth of St. John’s Wort. IEEE Access 2019, 7, 112848–112858. [Google Scholar] [CrossRef]
- Chen, M.; Yang, J.; Zhu, X.; Wang, X.; Liu, M.; Song, J. Smart Home 2.0: Innovative Smart Home System Powered by Botanical IoT and Emotion Detection. Mob. Netw. Appl. 2017, 22, 1159–1169. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef] [Green Version]
- Liakos, K.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [Green Version]
- Yao, C.; Zhang, Y.; Zhang, Y.; Liu, H. Application of Convolutial Neural Network in Classification of High Resolution Agricultural Remote Sensing Images. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Proceedings of the 2017 ISPRS Geospatial Week 2017, Wuhan, China, 18–22 September 2017; Copernicu Publications: Göttingen, Germany, 2017; Volume XLII-2/W7, pp. 989–992. [Google Scholar] [CrossRef] [Green Version]
- Boulent, J.; Foucher, S.; Théau, J.; St-Charles, P. Convolutional Neural Networks for the Automatic Identification of Plant Diseases. Front. Plant Sci. 2019, 10, 941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.K.; Ganapathysubramanian, B.; Sarkar, S.; Singh, A. Deep Learning for Plant Stress Phenotyping: Trends and Future Perspectives. Trends Plant Sci. 2018, 23, 883–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Zhu, Y.; Zhang, X.; Ye, M.; Yang, J. Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas. J. Hydrol. 2018, 561, 918–929. [Google Scholar] [CrossRef]
- An, J.; Li, W.; Li, M.; Cui, S.; Yue, H. Identification and Classification of Maize Drought Stress Using Deep Convolutional Neural Network. Symmetry 2019, 11, 256. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, S.; Wang, P.; Jiang, B.; Li, M.; Gong, Z. Early detection of water stress in maize based on digital images. Comput. Electron. Agric. 2017, 140, 461–468. [Google Scholar] [CrossRef]
- Zhu, N.; Liu, X.; Liu, Z.; Hu, K.; Wang, Y.; Tan, J.; Huang, M.; Zhu, Q.; Ji, X.; Jiang, Y.; et al. Deep learning for smart agriculture: Concepts, tools, applications, and opportunities. Int. Agric. Biol. Eng. 2018, 11, 32–44. [Google Scholar] [CrossRef]
- Mora-Fallas, A.; Goëau, H.; Joly, A.; Bonnet, P.; Mata-Montero, E. Segmentación de instancias para detección automática de malezas y cultivos en campos de cultivo. Revista Tecnología En Marcha 2020, 33, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Sa, I.; Ge, Z.; Dayoub, F.; Upcroft, B.; Perez, T.; McCool, C. DeepFruits: A Fruit Detection System Using Deep Neural Networks. Sensors 2016, 16, 1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, H.; Chen, C. Fruit Detection and Segmentation for Apple Harvesting Using Visual Sensor in Orchards. Sensors 2019, 19, 4599. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.W.; Shivakumar, S.S.; Dcunha, S.; Das, J.; Okon, E.; Qu, C.; Taylor, J.; Kumar, V. Counting Apples and Oranges With Deep Learning: A Data-Driven Approach. IEEE Robot. Autom. Lett. 2017, 2, 781–788. [Google Scholar] [CrossRef]
- Rodrigues, E.R.; Oliveira, I.; Cunha, R.; Netto, M. DeepDownscale: A Deep Learning Strategy for High-Resolution Weather Forecast. In Proceedings of the 2018 IEEE 14th International Conference on e-Science (e-Science), Amsterdam, The Netherlands, 29 October–1 November 2018; pp. 415–422. [Google Scholar] [CrossRef] [Green Version]
- Wibisono, M.N.; Ahmad, A.S. Weather forecasting using Knowledge Growing System (KGS). In Proceedings of the 2017 2nd International Conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Yogyakarta, Indonesia, 1–2 November 2017; pp. 35–38. [Google Scholar] [CrossRef]
- Rousseau, D.; Dee, H.; Pridmore, T. Imaging Methods for Phenotyping of Plant Traits. In Phenomics in Crop Plants: Trends, Options and Limitations; Kumar, J., Pratap, A., Kumar, S., Eds.; Springer: New Delhi, India, 2015. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Schansker, G.; Brestic, M.; Bussotti, F.; Calatayud, A.; Ferroni, L.; Goltsev, V.; Guidi, L.; Jajoo, A.; Li, P.; et al. Frequently asked questions about chlorophyll fluorescence, the sequel. In Photosynthesis Research; Springer: Dordrecht, The Netherlands, 2017; Volume 132, pp. 13–66. [Google Scholar] [CrossRef] [Green Version]
- Made in China, Ningbo Peacefair Elevtronic Technology CO. LTD. PZEM004T, Single Phase TTL Modbus Electric Power Meter. 2019. Available online: https://peacefair.en.made-in-china.com/product/zygxPIcSbuhV/China-Peacefair-Pzem-004t-Single-Phase-Ttl-Modbus-Electric-Power-Meter.html (accessed on 14 December 2020).
- Greene, B.R.; Segales, A.R.; Waugh, S.; Duthoit, S.; Chilson, P.B. Considerations for temperature sensor placement on rotary-wing unmanned aircraft systems. Atmos. Meas. Tech. 2018, 11, 5519–5530. [Google Scholar] [CrossRef] [Green Version]
- Barnett, E.; Gosselin, C. Large-scale 3D printing with a cable-suspended robot. Addit. Manuf. 2015, 7, 27–44. [Google Scholar] [CrossRef]
- Bosch-Sensortec, BME280 Combined Humidity and Pressure Sensor, Version 1.6 BST-BME280-DS002-15. 2018. Available online: https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf (accessed on 14 December 2020).
- DF-Robot, Gravity Analog Infrared CO2 Sensor for Arduino SKU SEN0219. 2020. Available online: https://www.dfrobot.com/ product-1549.html (accessed on 14 December 2020).
- Sparkfun-Vishay Semiconductors VEML6075, Datasheet VEML6075, Document Number: 84304. 2016. Available online: https://cdn.sparkfun.com/assets/3/c/3/2/f/veml6075.pdf (accessed on 14 December 2020).
- Vishay Semiconductors VEML7700, Datasheet VEML7700, Document Number: 84286. 2019. Available online: https://www.vishay.com/docs/84286/veml7700.pdf (accessed on 14 December 2020).
- Seeed Studio the IoT Hardware Enabler, Groove Sensor, Groove Gas Sensor V2 (Multichannel). 2019. Available online: https://wiki.seeedstudio.com/Grove-Multichannel-Gas-Sensor-V2/ (accessed on 14 December 2020).
- Raspberry PI, Accessories, PI NoIR Camera v2. 2016. Available online: https://www.raspberrypi.org/products/pi-noir-camera-v2/?resellerType=home (accessed on 14 December 2020).
- LEPRON FLIR, LWIR Micro Thermal Camera Module 2.5. 2015. Available online: https://lepton.flir.com/wp-content/uploads/2015/06/lepton-2pt5-datasheet-04195.pdf (accessed on 14 December 2020).
- DFRobot, Waterproof DS18B20 Digital Temperature Sensor for Arduino SEN-0198. 2019. Available online: https://www.dfrobot.com/product-689.html (accessed on 14 December 2020).
- DFRobot, Gravity: Analog TDS Sensor/Meter SEN-0244. 2019. Available online: https://www.dfrobot.com/product-1662.html (accessed on 14 December 2020).
- DFRobot, Gravity: Analog Spear Tip pH Sensor/Meter Kit SEN-0249. 2019. Available online: https://www.dfrobot.com/product-1668.html (accessed on 14 December 2020).
- DFRobot, Gravity: Analog pH Sensor/Meter Kit V2 SEN-0237A. 2019. Available online: https://www.dfrobot.com/product-1628.html (accessed on 14 December 2020).
- DFRobot, Gravity: Analog Turbidity Sensor For Arduino SEN-0189. 2019. Available online: https://www.dfrobot.com/product-1394.html (accessed on 14 December 2020).
- DFRobot, TCS3200 RGB Color Sensor for Arduino SEN-0101. 2019. Available online: https://www.dfrobot.com/product-540.html (accessed on 14 December 2020).
- DFRobot, TOF Sense Laser Ranging Sensor (5m) SEN-0337. 2019. Available online: https://www.dfrobot.com/product-2004.html (accessed on 14 December 2020).
- Li, Y.; Manoharan, S. A performance comparison of SQL and NoSQL databases. In Proceedings of the 2013 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), Victoria, BC, Cabada, 27–29 August 2013; pp. 15–19. [Google Scholar] [CrossRef]
- Cukrov, M.; Jerončić, L.; Prelogović, L. Utjecaj Kontroliranog Vodnog Stresa na Sadržaj Bioaktivnih Spojeva u Hidroponskom Uzgoju Rikole (Eruca Sativa Mill.) i Špinata (Spinacia oleracea L.); Graduate Paper Awarded with Rector Award; Faculty of Agronomy, University of Zagreb: Zagreb, Croatia, 2017. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. arXiv 2016, arXiv:1602.07261. [Google Scholar]
- Huang, G.; Liu, Z.; Maaten, L.V.D.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar] [CrossRef] [Green Version]
- Mingxing, T.; Quoc, V.L. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2020, arXiv:1905.11946v5. [Google Scholar]
- Marjani, M.; Nasaruddin, F.; Gani, A.; Karim, A.; Hashem, I.A.T.; Siddiqa, A.; Yaqoob, I. Big IoT Data Analytics: Architecture, Opportunities, and Open Research Challenges. IEEE Access 2017, 5, 5247–5261. [Google Scholar] [CrossRef]
Sensor | Range | Accuracy | Interface | First Measurement | Sampling Speed | Cost |
---|---|---|---|---|---|---|
BME280 temp. [80] | −40 °C +85 °C | ±0.5 °C | I2C SPI | 1 s | 1 s | €12.55 |
BME280 hum. [80] | 0% RH 100% RH | ±3 RH | I2C SPI | 1 s | 1 s | €12.55 |
BME280 pressure [80] | 300 hPa 1100 hPa | ±1% | I2C SPI | 1 s | 1 s | €12.55 |
CO NDIR [81] | 0 ppm 5000 ppm | ±3% | Analog | 3 min | 120 s | €49.45 |
UV VEML6075 [82] | Sensitivity: 365 nm, 330 nm | ±10 nm | I2C | 50 ms | 50 ms | €14.55 |
Light VEML7700 [83] | 0 lux 120,000 lux | 0.0036 lux | I2C | 1100 ms | 1100 ms | €4.50 |
GAS sensor: CO, NO2, C2H5OH, VOC [84] | 1 ppm 5000 ppm | Depend on GAS | I2C | 30 s | 60 s | €40.90 |
and concentration | ||||||
PZEM004T Energy power meter [77] | 80 V–260 V 0 A–100 A 0 W–22 kW | 1.0 grade | Modbus-TTL | 1 s | 1 s | €9.70 |
0 Wh–9999 kWh 45 Hz–65 Hz | ||||||
PiNoIR camera module v2 [85] | 8 MPixel Sony IMX219 NO IR filter | Camera port | 30 fps | 30 fps | €30.30 | |
FLIR LWIR Micro Thermal camera | 80 × 60 resolution | <50 mK sensitivity | Module SPI | 30 fps | 30 fps | €204.50 |
module 2.5 [86] | ||||||
DS18B20 digital temp. [87] | −10 °C +85 °C | ±0.5 °C | I2C | 1 s | 1 s | €9.70 |
TDS Sensor [88] | 0 ppm 10,000 ppm | ±10% F.S. | Analog | 1 s | 1 s | €10.05 |
pH Sensor [89] | 0 pH 14 pH | ±0.1 pH | Analog | 1 s | 1 s | €84.35 |
Dissolved Oxygen Sensor [90] | 0 mg/L 20 mg/L | ±10% F.S. | Analog | 1 s | 1 s | €144.00 |
Turbidity Sensor [91] | 0 NTU 3000 NTU/L | ±10% F.S. | Analog | 1 s | 1 s | €8.45 |
Soil Moisture [22] | 1.2 V 2.5 V | N/A | Analog | 0 | 0 | €5.05 |
RGB Color Sensor TCS3200 [92] | R G and B values 0–255 | ±0.2% | Digital TTL | 1 s (protocol) | 1 s (protocol) | €6.75 |
Laser sensor [93] | 0.012 m 2.16 m | ±1 cm | UART | 0 | 0 | €21.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cafuta, D.; Dodig, I.; Cesar, I.; Kramberger, T. Developing a Modern Greenhouse Scientific Research Facility—A Case Study. Sensors 2021, 21, 2575. https://doi.org/10.3390/s21082575
Cafuta D, Dodig I, Cesar I, Kramberger T. Developing a Modern Greenhouse Scientific Research Facility—A Case Study. Sensors. 2021; 21(8):2575. https://doi.org/10.3390/s21082575
Chicago/Turabian StyleCafuta, Davor, Ivica Dodig, Ivan Cesar, and Tin Kramberger. 2021. "Developing a Modern Greenhouse Scientific Research Facility—A Case Study" Sensors 21, no. 8: 2575. https://doi.org/10.3390/s21082575
APA StyleCafuta, D., Dodig, I., Cesar, I., & Kramberger, T. (2021). Developing a Modern Greenhouse Scientific Research Facility—A Case Study. Sensors, 21(8), 2575. https://doi.org/10.3390/s21082575