Characterization of Shear Horizontal Waves Using a 1D Laser Doppler Vibrometer
Abstract
:1. Introduction
2. Proposed Technique
3. FEA
4. Experimental Validation
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bo, L.; Xiao, C.; Hualin, C.; Mohammad, M.A.; Xiangguang, T.; Luqi, T.; Yi, Y.; Tianling, R. Surface acoustic wave devices for sensor applications. J. Semicond. 2016, 37, 021001. [Google Scholar]
- Devkota, J.; Ohodnicki, P.R.; Greve, D.W. SAW sensors for chemical vapors and gases. Sensors 2017, 17, 801. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Caron, J.J.; Vetelino, J.F. The Bleustein–Gulyaev wave for liquid sensing applications. Sens. Actuators B Chem. 2001, 76, 64–68. [Google Scholar] [CrossRef]
- Kurosawa, M.; Takahashi, M.; Higuchi, T. Ultrasonic linear motor using surface acoustic waves. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1996, 43, 901–906. [Google Scholar] [CrossRef]
- Shigematsu, T.; Kurosawa, M.K. Miniaturized SAW motor with 100 MHz drive frequency. IEEJ Trans. Sens. Micromach. 2006, 126, 166–167. [Google Scholar] [CrossRef] [Green Version]
- Matthews, H. Surface wave filters: Design, construction, and use. Proc. IEEE 1977, 67, 1086–1087. [Google Scholar]
- Kadota, M.; Ago, J.; Horiuchi, H. A Bleustein-Gulyaev-Shimizu wave resonator having resonances for TV and VCR traps. IEEE Trans. Microw. Theory Tech. 1996, 44, 2758–2762. [Google Scholar] [CrossRef]
- Morgan, D. Surface Acoustic Wave Filters: With Applications to Electronic Communications and Signal Processing; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Schulz, M.; Holland, M. Surface acoustic wave delay lines with small temperature coefficient. Proc. IEEE 1970, 58, 1361–1362. [Google Scholar] [CrossRef]
- Harma, S.; Arthur, W.G.; Hartmann, C.S.; Maev, R.G.; Plessky, V.P. Inline SAW RFID tag using time position and phase encoding. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 1840–1846. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Tao, H.; Yongan, S. Surface acoustic wave based radio frequency identification tags. In Proceedings of the 2008 IEEE International Conference on e-Business Engineering, Xi’an, China, 22–24 October 2008; pp. 563–567. [Google Scholar]
- Ivanov, D. BioMEMS Sensor Systems for Bacterial Infection Detection. Biodrugs 2006, 20, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Mitsakakis, K.; Tserepi, A.; Gizeli, E. SAW device integrated with microfluidics for array-type biosensing. Microelectron. Eng. 2009, 86, 1416–1418. [Google Scholar] [CrossRef]
- Nomura, T.; Yasuda, T. Surface acoustic wave liquid sensors based on one-port resonator. Jpn. J. Appl. Phys. 1993, 32, 2372. [Google Scholar] [CrossRef]
- Morozumi, K.; Kadota, M.; Hayashi, S. Characteristics of BGS wave resonators using ceramic substrates and their applications. In Proceedings of the 1996 IEEE Ultrasonics Symposium, San Antonio, TX, USA, 3–6 November 1996; Volume 1, pp. 81–86. [Google Scholar]
- Smagin, N.; Djoumi, L.; Herth, E.; Vanotti, M.; Fall, D.; Blondeau-Patissier, V.; Duquennoy, M.; Ouaftouh, M. Fast time-domain laser Doppler vibrometry characterization of surface acoustic waves devices. Sens. Actuators A Phys. 2017, 264, 96–106. [Google Scholar] [CrossRef]
- Yuan, W.; Zhao, J.; Zhang, D.; Zhong, Z. Measurement of Surface Acoustic Wave Using Air Coupled Transducer And Laser Doppler Vibrometer. In Proceedings of the 21st International Conference on Composite Materials, Xian, China, 20–25 August 2017. [Google Scholar]
- Nakamura, K. Shear-horizontal piezoelectric surface acoustic waves. Jpn. J. Appl. Phys. 2007, 46, 4421. [Google Scholar] [CrossRef]
- Bleustein, J.L. A new surface wave in piezoelectric materials. Appl. Phys. Lett. 1968, 13, 412–413. [Google Scholar] [CrossRef]
- Gulyaev, Y.V. Electroacoustic surface waves in solids. ZhETF Pisma Redaktsiiu 1969, 9, 63. [Google Scholar]
- Pop, F.V.; Kochhar, A.S.; Vidal-Álvarez, G.; Piazza, G. Investigation of electromechanical coupling and quality factor of X-cut lithium niobate laterally vibrating resonators operating around 400 MHz. J. Microelectromech. Syst. 2018, 27, 407–413. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, R.; Zhou, H.; Link, S.; Yang, Y.; Li, Z.; Huang, K.; Ou, X.; Gong, S. Surface acoustic wave devices using lithium niobate on silicon carbide. IEEE Trans. Microw. Theory Tech. 2020, 68, 3653–3666. [Google Scholar] [CrossRef]
- Avramov, I. 1 GHz low loss coupled resonator filter using surface skimming bulk waves and Bleustein-Gulyaev waves. Electron. Lett. 1991, 27, 414–415. [Google Scholar] [CrossRef]
- Miyamoto, A.; Wakana, S.; Ito, A. Novel optical observation technique for shear horizontal wave in SAW resonators on 42/spl deg/YX-cut lithium tantalate. In Proceedings of the 2002 IEEE Ultrasonics Symposium, Munich, Germany, 8–11 October 2002; Volume 1, pp. 89–92. [Google Scholar]
- Kim, M.G.; Jo, K.; Kwon, H.S.; Jang, W.; Park, Y.; Lee, J.H. Fiber-optic laser Doppler vibrometer to dynamically measure MEMS actuator with in-plane motion. J. Microelectromech. Syst. 2009, 18, 1365–1370. [Google Scholar]
- Arabi, M.; Gopanchuk, M.; Abdel-Rahman, E.; Yavuz, M. Measurement of In-Plane Motions in MEMS. Sensors 2020, 20, 3594. [Google Scholar] [CrossRef] [PubMed]
- Plessky, V.; Wang, W.; Wang, H.; Wu, H.; Shui, Y. P2M-4 Optimization of STW Resonator by Using FEM/BEM. In Proceedings of the 2006 IEEE Ultrasonics Symposium, Vancouver, BC, Canada, 2–6 October 2006; pp. 1863–1865. [Google Scholar]
- Mimura, M.; Ajima, D.; Konoma, C.; Murase, T. Small sized band 20 SAW duplexer using low acoustic velocity Rayleigh SAW on LiNbO 3 substrate. In Proceedings of the 2017 IEEE International Ultrasonics Symposium (IUS), Washington, DC, USA, 6–9 September 2017; pp. 1–4. [Google Scholar]
- Kowarsch, R.; Ochs, W.; Giesen, M.; Dräbenstedt, A.; Winter, M.; Rembe, C. Real-time 3D vibration measurements in microstructures. In Optical Micro-and Nanometrology IV; International Society for Optics and Photonics: Bellingham, WA, USA, 2012; Volume 8430, p. 84300C. [Google Scholar]
- Chiba, Y.; Ebihara, T.; Mizutani, K.; Wakatsuki, N. Measurement of Love wave propagation characteristics along elastic substrate and viscoelastic surface layer. In Proceedings of the 37th Symposium on Ultrasonic Electronics (USE2016), Busan, Korea, 16–18 November 2016; Volume 37, p. 2P2-2. [Google Scholar]
- Ayers, J.; Apetre, N.; Ruzzene, M.; Sabra, K. Measurement of Lamb wave polarization using a one-dimensional scanning laser vibrometer (L). J. Acoust. Soc. Am. 2011, 129, 585–588. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.E.; Tyson, J.; Galanulis, K.; Revilock, D.M.; Melis, M.E. Full-field dynamic deformation and strain measurements using high-speed digital cameras. In Proceedings of the 26th International Congress on High-Speed Photography and Photonics, Alexandria, VA, USA, 20–24 September 2004; Volume 5580, pp. 174–185. [Google Scholar]
- Ehrhardt, D.A.; Allen, M.S.; Yang, S.; Beberniss, T.J. Full-field linear and nonlinear measurements using continuous-scan laser doppler vibrometry and high speed three-dimensional digital image correlation. Mech. Syst. Signal Process. 2017, 86, 82–97. [Google Scholar] [CrossRef]
- Guo, F.; Sun, R. Propagation of Bleustein–Gulyaev wave in 6mm piezoelectric materials loaded with viscous liquid. Int. J. Solids Struct. 2008, 45, 3699–3710. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.; Wang, G.; Rogerson, G. Inverse determination of liquid viscosity by means of the Bleustein–Gulyaev wave. Int. J. Solids Struct. 2012, 49, 2115–2120. [Google Scholar] [CrossRef] [Green Version]
- Kiełczyński, P.; Szalewski, M.; Balcerzak, A.; Rostocki, A.; Tefelski, D. Application of SH surface acoustic waves for measuring the viscosity of liquids in function of pressure and temperature. Ultrasonics 2011, 51, 921–924. [Google Scholar] [CrossRef] [PubMed]
- Zaitsev, B.; Kuznetsova, I.; Joshi, S.; Borodina, I. Acoustic waves in piezoelectric plates bordered with viscous and conductive liquid. Ultrasonics 2001, 39, 45–50. [Google Scholar] [CrossRef]
- Collet, B.; Destrade, M.; Maugin, G.A. Bleustein–Gulyaev waves in some functionally graded materials. Eur. J. Mech. A Solids 2006, 25, 695–706. [Google Scholar] [CrossRef] [Green Version]
- Elhady, A.; Basha, M.; Abdel-Rahman, E. Tunable Bleustein-Gulyaev Permittivity Sensors. In New Trends in Nonlinear Dynamics; Springer: Cham, Switzerland, 2020; pp. 3–11. [Google Scholar]
- Kadota, M.; Ago, J.; Horiuchi, H.; Morii, H. Transversely coupled resonator filters utilizing reflection of Bleustein-Gulyaev-Shimizu wave at free edges of substrate. Jpn. J. Appl. Phys. 2000, 39, 3045. [Google Scholar] [CrossRef]
- Butt, Z.; Anjum, Z.; Sultan, A.; Qayyum, F.; Ali, H.M.K.; Mehmood, S. Investigation of electrical properties & mechanical quality factor of piezoelectric material (PZT-4A). J. Electr. Eng. Technol. 2017, 12, 846–851. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elhady, A.; Abdel-Rahman, E.M. Characterization of Shear Horizontal Waves Using a 1D Laser Doppler Vibrometer. Sensors 2021, 21, 2467. https://doi.org/10.3390/s21072467
Elhady A, Abdel-Rahman EM. Characterization of Shear Horizontal Waves Using a 1D Laser Doppler Vibrometer. Sensors. 2021; 21(7):2467. https://doi.org/10.3390/s21072467
Chicago/Turabian StyleElhady, Alaa, and Eihab M. Abdel-Rahman. 2021. "Characterization of Shear Horizontal Waves Using a 1D Laser Doppler Vibrometer" Sensors 21, no. 7: 2467. https://doi.org/10.3390/s21072467
APA StyleElhady, A., & Abdel-Rahman, E. M. (2021). Characterization of Shear Horizontal Waves Using a 1D Laser Doppler Vibrometer. Sensors, 21(7), 2467. https://doi.org/10.3390/s21072467