A Novel Stochastic Approach for Static Damage Identification of Beam Structures Using Homotopy Analysis Algorithm
Abstract
1. Introduction
2. Theory
2.1. Stochastic Static Damage Identification Equation
2.2. Homotopy Solution of the Stochastic Damage Identification Equation
2.3. Static Condensation of Damage Identification
2.4. L1 Regularization Algorithm
2.5. Probability-Based Damage Identification
3. Numerical Examples
3.1. A Simply Supported Beam
3.1.1. Effect of Damage States
3.1.2. Effect of Uncertainty of Measurement Errors
3.1.3. Effect of Uncertainty of Modelling Error
3.2. A Continuous Beam with Variable Cross-Section
4. Experimental Verification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lakshmanan, N.; Raghuprasad, B.; Muthumani, K.; Gopalakrishnan, N.; Basu, D. Identification of reinforced concrete beam-like structures subjected to distributed damage from experimental static measurements. Comput. Concr. 2008, 5, 37–60. [Google Scholar] [CrossRef]
- Lu, Z.R.; Zhu, J.J.; Ou, Y.J. Structural damage identification using incomplete static displacement measurement. Struct. Eng. Mech. Int. J. 2017, 63, 251–257. [Google Scholar]
- Guo, J.; Wang, L.; Takewaki, I. Static damage identification in beams by minimum constitutive relation error. Inverse Probl. Sci. Eng. 2018, 27, 1347–1371. [Google Scholar] [CrossRef]
- Shenton, H.W.; Hu, X. Damage Identification Based on Dead Load Redistribution: Methodology. J. Struct. Eng. 2006, 132, 1254–1263. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, S.Y. Damage localization of beam bridges using quasi-static strain influence lines based on the BOTDA technique. Sensors. 2018, 18, 4446. [Google Scholar] [CrossRef]
- Maity, D.; Saha, A. Damage assessment in structure from changes in static parameter using neural networks. Sadhana 2004, 29, 315–327. [Google Scholar] [CrossRef]
- Wang, D.; Xiang, W.; Zhu, H. Damage identification in beam type structures based on statistical moment using a two step method. J. Sound Vib. 2014, 333, 745–760. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Z.; Xiang, W.; Zhu, H. Experimental investigation of damage identification in beam structures based on the strain statistical moment. Adv. Struct. Eng. 2017, 20, 747–758. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, P.; Jin, T.; Zhu, H. Damage Identification for Beam Structures Using the Laplace Transform-Based Spectral Element Method and Strain Statistical Moment. J. Aerosp. Eng. 2018, 31, 04018016. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, L.; Chen, Z.; Zhou, J.; Zhu, C. Mode-specific damage identification method for reinforced concrete beams: Concept, theory and experiments. Constr. Build. Mater. 2016, 124, 1090–1099. [Google Scholar] [CrossRef]
- Impollonia, N.; Failla, I.; Ricciardi, G. Parametric Statistical Moment Method for Damage Detection and Health Monitoring. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2016, 2, 4016001. [Google Scholar] [CrossRef]
- Xiang, C.-S.; Li, L.-Y.; Zhou, Y.; Dang, C. An Efficient Damage Identification Method for Simply Supported Beams Based on Strain Energy Information Entropy. Adv. Mater. Sci. Eng. 2020, 2020, 9283949. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, N.; Zhong, Y. A two-step damage quantitative identification method for beam structures. Measurement. 2021, 168, 108434. [Google Scholar] [CrossRef]
- Pooya, S.M.H.; Massumi, A. A novel and efficient method for damage detection in beam-like structures solely based on damaged structure data and using mode shape curvature estimation. Appl. Math. Model. 2021, 91, 670–694. [Google Scholar] [CrossRef]
- He, H.-X.; Zheng, J.-C.; Liao, L.-C.; Chen, Y.-J. Damage identification based on convolutional neural network and recurrence graph for beam bridge. Struct. Health Monit. 2020, 5, 1–17. [Google Scholar] [CrossRef]
- Wang, S.; Long, X.; Luo, H.; Zhu, H. Damage Identification for Underground Structure Based on Frequency Response Function. Sensors 2018, 18, 3033. [Google Scholar] [CrossRef] [PubMed]
- Greco, A.; Pau, A. Detection of a concentrated damage in a parabolic arch by measured static displacements. Struct. Eng. Mech. 2011, 39, 751–765. [Google Scholar] [CrossRef]
- Yang, Q.; Sun, B. Structural damage localization and quantification using static test data. Struct. Health Monit. 2011, 10, 381–389. [Google Scholar] [CrossRef]
- Rezaiee-Pajand, M.; Kazemiyan, M.S.; S, A.A. Static Damage Identification of 3D and 2D Frames. Mech. Based Des. Struct. Mach. 2013, 42, 70–96. [Google Scholar] [CrossRef]
- Seyedpoor, S.; Yazdanpanah, O. An efficient indicator for structural damage localization using the change of strain energy based on static noisy data. Appl. Math. Model. 2014, 38, 2661–2672. [Google Scholar] [CrossRef]
- Wang, X.; Hu, N.; Fukunaga, H.; Yao, Z.H. Structural damage identification using static test data and changes in frequencies. Eng. Struct. 2001, 23, 610–621. [Google Scholar] [CrossRef]
- Raghuprasad, B.K.; Lakshmanan, N.; Gopalakrishnan, N.; Sathishkumar, K.; Sreekala, R. Damage identification of beam-like structures with contiguous and distributed damage. Struct. Control Health Monit. 2012, 20, 496–519. [Google Scholar] [CrossRef]
- Lu, Z.; Lin, X.; Chen, Y.; Huang, M. Hybrid sensitivity matrix for damage identification in axially functionally graded beams. Appl. Math. Model. 2017, 41, 604–617. [Google Scholar] [CrossRef]
- Yang, J.; Li, P.; Yang, Y.; Xu, D. An improved EMD method for modal identification and a combined static-dynamic method for damage detection. J. Sound Vib. 2018, 420, 242–260. [Google Scholar] [CrossRef]
- Friswell, M. Damage identification using inverse methods. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 365, 393–410. [Google Scholar] [CrossRef] [PubMed]
- Caddemi, S.; Greco, A. The influence of instrumental errors on the static identification of damage parameters for elastic beams. Comput. Struct. 2006, 84, 1696–1708. [Google Scholar] [CrossRef]
- Buda, G.; Caddemi, S. Identification of Concentrated Damages in Euler-Bernoulli Beams under Static Loads. J. Eng. Mech. 2007, 133, 942–956. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Z. Identification of boundary conditions of tapered beam-like structures using static flexibility measurements. Mech. Syst. Signal Process. 2011, 25, 2484–2500. [Google Scholar] [CrossRef]
- Hu, X.; Shenton, H.W. Damage Identification Based on Dead Load Redistribution: Effect of Measurement Error. J. Struct. Eng. 2006, 132, 1264–1273. [Google Scholar] [CrossRef]
- Yu, L.; Cheng, L.; Yam, L.; Yan, Y. Application of eigenvalue perturbation theory for detecting small structural damage using dynamic responses. Compos. Struct. 2007, 78, 402–409. [Google Scholar] [CrossRef]
- Yin, T.; Lam, H.-F.; Zhu, H.-P. Statistical detection of structural damage based on model reduction. Appl. Math. Mech. 2009, 30, 875–888. [Google Scholar] [CrossRef]
- He, R.; Zhu, Y.; He, W.; Chen, H. Structural Damage Recognition Based on Perturbations of Curvature Mode Shape and Frequency. Acta Mech. Solida Sin. 2018, 31, 794–803. [Google Scholar] [CrossRef]
- Wong, C.N.; Zhu, W.D.; Xu, G.Y. On an Iterative General-Order Perturbation Method for Multiple Structural Damage Detection. J. Sound Vib. 2004, 273, 363–386. [Google Scholar] [CrossRef]
- Stefanou, G. The stochastic finite element method: Past, present and future. Comput. Methods Appl. Mech. Eng. 2009, 198, 1031–1051. [Google Scholar] [CrossRef]
- Sachdeva, S.K.; Nair, P.B.; Keane, A.J. Comparative study of projection schemes for stochastic finite element analysis. Comput. Methods Appl. Mech. Eng. 2006, 195, 2371–2392. [Google Scholar] [CrossRef][Green Version]
- Apetre, N.; Ruzzene, M. Spectral and perturbation analysis for ultrasonic guided waves. J. Sound Vib. 2012, 331, 5358–5369. [Google Scholar] [CrossRef]
- Sachdeva, S.K.; Nair, P.B.; Keane, A.J. Hybridization of stochastic reduced basis methods with polynomial chaos expansions. Probabilistic Eng. Mech. 2006, 21, 182–192. [Google Scholar] [CrossRef][Green Version]
- Liao, S. On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 2004, 147, 499–513. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, B. A new homotopy-based approach for structural stochastic analysis. Probabilistic Eng. Mech. 2019, 55, 42–53. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, H.; Phoon, K.-K. Homotopy approach for random eigenvalue problem. Int. J. Numer. Methods Eng. 2017, 113, 450–478. [Google Scholar] [CrossRef]
- Koh, C.G.; Tee, K.F.; Quek, S.T. Condensed Model Identification and Recovery for Structural Damage Assessment. J. Struct. Eng. 2006, 132, 2018–2026. [Google Scholar] [CrossRef]
- Hou, R.; Xia, Y.; Zhou, X. Structural damage detection based on L1 regularization using natural frequencies and mode shapes. Struct. Control Health Monit. 2018, 25, e2017. [Google Scholar] [CrossRef]
- Lu, Z.-R.; Zhou, J.; Wang, L.; Liu, J. Damage identification from static tests by eigenparameter decomposition and sparse regularization. Struct. Health Monit. 2019, 19, 1351–1374. [Google Scholar] [CrossRef]
- Fan, X.; Li, J. Damage Identification in Plate Structures Using Sparse Regularization Based Electromechanical Impedance Technique. Sensors 2020, 20, 7069. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-J.; Huang, B.; Li, C.-Q. Hybrid perturbation-Galerkin methods for structural reliability analysis. Probabilistic Eng. Mech. 2017, 48, 59–67. [Google Scholar] [CrossRef]
- Gaxiola-Camacho, J.R.; Bennett, R.; Guzman-Acevedo, G.M.; Gaxiola-Camacho, I.E. Structural Evaluation of Dynamic and Semi-Static Displacements of the Juarez Bridge Using GPS Technology. Measurement. 2017, 110, 146–153. [Google Scholar]
- Wu, Z.; Huang, B.; Li, Y.; Pu, W. A statistical model updating method of beam structures with random parameters under static load. Appl. Sci. 2017, 7, 601. [Google Scholar] [CrossRef]
- China Academy of Building Research. Standard for Test Method of Concrete Structures (GB/T50152-2012); China Building Industry Press: Beijing, China, 2012. [Google Scholar]
- Ji, X.; Miao, Z.; Kromanis, R. Vision-based measurements of deformations and cracks for RC structure tests. Eng. Struct. 2020, 212, 110508. [Google Scholar] [CrossRef]
- Erdenebat, D.; Waldmann, D. Application of the DAD method for damage localisation on an existing bridge structure using close-range UAV photogrammetry. Eng. Struct. 2020, 218, 110727. [Google Scholar] [CrossRef]
- Shen, P. Design Theory of Concrete Structures; Advanced Education Press: Beijing, China, 2012. [Google Scholar]
Case | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Case 1 | 0 | 0 | 0 | 20 | 0 | 0 | 0 | 0 |
Case 2 | 5 | 0 | 0 | 15 | 10 | 0 | 5 | 0 |
Case 3 | 5 | 10 | 15 | 25 | 20 | 15 | 10 | 5 |
Element Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction ratio | 5% | 10% | 20% | 25% | 20% | 5% | 5% | 10% | 20% | 20% | 10% | 5% |
Method | HDI | FPDI | MC |
---|---|---|---|
CPU time | 534 | 443 | 4158 |
No. | Number of Node | ||||||
---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | 7 | 8 | |
1 | 8.914 | 17.413 | 21.181 | 23.171 | 21.748 | 16.117 | 8.581 |
2 | 9.785 | 17.528 | 25.648 | 27.824 | 25.138 | 19.632 | 10.251 |
3 | 12.032 | 21.845 | 27.361 | 28.752 | 26.843 | 20.856 | 11.732 |
Mean | 10.243 | 18.929 | 24.730 | 26.582 | 24.576 | 18.868 | 10.188 |
S.D | 1.314 | 2.063 | 2.605 | 2.442 | 2.118 | 2.009 | 1.287 |
COV | 0.128 | 0.109 | 0.105 | 0.092 | 0.086 | 0.107 | 0.126 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Huang, B.; Tee, K.F.; Zhang, W. A Novel Stochastic Approach for Static Damage Identification of Beam Structures Using Homotopy Analysis Algorithm. Sensors 2021, 21, 2366. https://doi.org/10.3390/s21072366
Wu Z, Huang B, Tee KF, Zhang W. A Novel Stochastic Approach for Static Damage Identification of Beam Structures Using Homotopy Analysis Algorithm. Sensors. 2021; 21(7):2366. https://doi.org/10.3390/s21072366
Chicago/Turabian StyleWu, Zhifeng, Bin Huang, Kong Fah Tee, and Weidong Zhang. 2021. "A Novel Stochastic Approach for Static Damage Identification of Beam Structures Using Homotopy Analysis Algorithm" Sensors 21, no. 7: 2366. https://doi.org/10.3390/s21072366
APA StyleWu, Z., Huang, B., Tee, K. F., & Zhang, W. (2021). A Novel Stochastic Approach for Static Damage Identification of Beam Structures Using Homotopy Analysis Algorithm. Sensors, 21(7), 2366. https://doi.org/10.3390/s21072366