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Abstract: This paper proposes a new damage identification approach for beam structures with
stochastic parameters based on uncertain static measurement data. This new approach considers
not only the static measurement errors, but also the modelling error of the initial beam structures
as random quantities, and can also address static damage identification problems with relatively
large uncertainties. First, the stochastic damage identification equations with respect to the damage
indexes were established. On this basis, a new homotopy analysis algorithm was used to solve the
stochastic damage identification equations. During the process of solution, a static condensation
technique and a L1 regularization method were employed to address the limited measurement data
and ill-posed problems, respectively. Furthermore, the definition of damage probability index is
presented to evaluate the possibility of existing damages. The results of two numerical examples
show that the accuracy and efficiency of the proposed damage identification approach are good. In
comparison to the first-order perturbation method, the proposed method can ensure better accuracy
in damage identification with relatively large measurement errors and modelling error. Finally,
according to the static tests of a simply supported concrete beam, the proposed method successfully
identified the damage of the beam.

Keywords: stochastic damage identification; modelling error; measurement error; homotopy analysis
algorithm; static condensation; L1 regularization

1. Introduction

In recent decades, the construction of bridges has developed rapidly in China. Due
to the imperfection of construction or long periods of operation, bridge structures usually
have some degree of damage. Similar to the bridge structures, many beam structures in
civil engineering face the same safety problem. Therefore, the damage identification of
beam structures including bridges has attracted increasing attention of researchers [1–15].

For most damage identification techniques, dynamic measurement data are often
employed [16]. Generally, dynamic tests can provide more information and are easier
to implement than static tests during the service life of structures. However, for some
certain types of structures, such as beam structures, static tests can be performed as easily
as dynamic tests. For the static identification methods, the test equipment required are
relatively cheap and the static displacements or strains of structures can be measured
accurately. In addition to boundary conditions, the dynamic damage identification is
affected by not only structural stiffness but also mass and damping ratio. However, for
static identification, only structural stiffness needs to be considered.

In view of this, the static damage identification of beam structures is paid more
attention. Three types of static damage identification methods have been proposed, which
are based on the measured static displacements [1–3,17–19], static strains [4,5,20], and both
the static displacements and strains [6]. For example, Lakshmanan [1] applied a least
square error-based solution method for the estimation of flexural rigidities and damages of
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beam structures by the static measured deformation values. Lu [2] used the incomplete
static measured displacement to localize the damage in the element level of the beam
structures. Guo [3] presented a novel static approach to identify the damage of beams
based on the minimum constitutive relation error. Unlike straight beams, Greco [17]
dealt with the inverse problem of damage identification in an elastic parabolic arch using
the static displacements. Based on static strain measurements, Shenton [4] proposed a
damage identification procedure using a genetic algorithm in a fixed-fixed beam structure.
Liu [5] introduced a Brillouin optical time domain analysis technique integrated with
quasi-static strain influence lines to locate the damage of girders. Combining the strain
with displacement, Maity [6] used static information as possible candidates of a back-
propagation neural network damage identification approach to detect existing damages
of a simple cantilever beam. Not restricted to the beam structures, Yang [18] made use of
the new flexibility disassembly technique based on the static responses for the damage
localization and quantification of truss structures. Rezaiee-Pajand [19] presented a new
algorithm for static damage detection of two- and three-dimensional frames based on static
displacements. Seyedpoor [20] used the static strain energy as an index to identify damage
locations of the truss and frame structures.

To acquire more available data, some researchers also used identification algorithms
based on the combination to dynamic and static test data. Wang [21] presented a two-
stage identification algorithm to identify the structural damage by employing the changes
in natural frequencies and static measured displacements. Raghuprasad [22] achieved
damage identification through static deflection values and dynamic modal frequencies.
Lu [23] tried to identify the damage using noisy natural frequency and displacement
measurements. Yang [24] proposed a new combined static–dynamic method for structural
damage identification. However, in the literature [23,24], it was obviously found that the
statically identified results appear to be different to those from the dynamic estimates. This
problem deserves further study.

In summary, the above methods are able to use static measurement data to identify
structural damage assuming that the structural modelling is certain. Compared with the
damage identification of deterministic structures, structural damage identification methods
based on the theory of probability can reflect the uncertain nature of the damage problems
with stochastic parameters and measurement error or noise. It is expected to realize the
damage identification of engineering structures statistically by solving random inverse
problems [25]. Regarding this aspect, some researchers have conducted many active works.
For example, Caddemi [26,27] used a Monte Carlo method to simulate the noise which was
modelled as a random variable and presented explicit solutions of the damage identification
problem for the case of simply supported beams. Wang [28] achieved static flexibility
measurement by adding a Gauss noise to one sample of the real measured flexibilities, and
then identified the boundary conditions of the tapered beam-like structures. Compared
with the literature [4], Hu [29] investigated the effect of measurement error, which is
modelled as a Gaussian, zero-mean, random variable, using Monte Carlo simulation.
However, the effect of the uncertain modelling error on the damage identification results
was not investigated. For finite element-based static identification methods, the literature
seldom statistically considers the effect of both the measurement error and the modelling
error on the damage estimation of structures. Therefore, it is important to develop new
static data-based damage methods to address the uncertainty errors in measurement
and modelling.

At present, a number of stochastic static damage identification methods have been
developed, including the Monte Carlo simulation methods [26–29] and the perturbation
methods [30–33]. Due to the versatility of Monte Carlo simulation, it is commonly used
to investigate the random characteristics of identified results and verify the accuracy of
other stochastic identification methods. However, the computational power and workload
of applying Monte Carlo simulation to large-scale complex problems are demanding.
The perturbation method is another commonly used and efficient tool to address the
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uncertainty in stochastic damage identification. For example, Yu [30] applied the first-order
perturbation method to detect small structural damage of a cantilever composite plate
with a single crack. Yin [31] proposed a statistical damage detection approach based on
the dynamical model reduction technique and the perturbation technique. He [32] used
the first-order and second-order perturbation equations of curvature modal shape and
frequency to identify the damage. Wong [33] iteratively used the perturbation method in
conjunction with an optimization method to identify the stiffness parameters of damaged
structures. In these works, the efficiency of these perturbation methods was high, but they
were limited to small uncertainties of damage. When addressing relatively large damage,
it cannot always ensure the accuracy of damage identification.

Thus, following the idea of finite element-based stochastic damage identification
methods, a homotopy analysis algorithm is introduced to address the stochastic static
identification problems with relatively large uncertainty of damage. Based on the concept of
homotopy, this paper focuses on a novel stochastic approach for the damage identification
of beam structures using static measurement data. The new static damage identification
method considers not only the initial modelling errors, but also the static measurement
errors. The initial models of beam structures are regarded as random because the modelling
error is inevitable. In addition, the measurement errors are assumed to be uncertain. After
the stochastic identification equations for damage indexes are established, the homotopy
analysis algorithm is used to solve the identification equations. Because the measured
degrees of freedom (DOFs) of the identified beam structures are usually limited, some
of them are unavailable, and a static condensation technique is employed to solve the
stochastic damage identification. To address the ill-posed problems caused by incomplete
measurement information and static measurement errors, the L1 regularization method
is used to solve the homotopy damage equations. Additionally, the damage probability
indexes of beam structures are defined. Two numerical examples, a simply supported beam
and a continuous beam, are provided to demonstrate the identification effectiveness of the
proposed method. In the damage identification of the continuous beam with various cross-
sections, the first-order perturbation method is used to compare with the proposed method.
Furthermore, a series of static tests of a simply supported concrete beam is implemented to
verify the new stochastic identification method. The numerical and experimental results
indicate that the proposed new stochastic identification method can identify structural
damage effectively and quickly. It is also expected that this new method can be applied to
the damage detection of other types of structures, such as various smart structures.

2. Theory
2.1. Stochastic Static Damage Identification Equation

For a beam structural system with N degrees of freedom, the static equilibrium
equations of the structure at the initial intact state and damaged state can be expressed,
respectively, as:

K0x0 = F0 (1)

Kdxd = Fd (2)

where K0 and Kd are N × N dimensional stiffness matrixes at the initial intact state and
damaged state, respectively. x0 and xd denote the displacement vectors of the structure at
the initial and damaged states, respectively. F0 and Fd are static load vectors related to the
initial and damaged states, respectively.

It is assumed that the damage of the beam structure derives from a change of elastic
modulus or bending rigidity of the structure at the element level, and this change will lead
to the variation, ∆K, of the stiffness matrix of the initial structure, which is represented by:

∆K =
n

∑
i=1

αiKi (3)
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where n is the total number of beam structural elements, αi is the damage index of the
i-th element, which means the variation of elastic modulus or bending rigidity of the i-th
element. Ki is a N × N dimensional expanded matrix of the i-th element stiffness matrix of
the beam structure, where all elements in the expanded parts are zeros.

Because the damage of the beam structure causes the change of the structural stiffness,
the stiffness matrix Kd and the displacement vector xd of the damaged beam structure can
be expressed, respectively, as:

Kd = K0 + ∆K (4)

xd = x0 − ∆x (5)

Substituting Equation (3) into Equation (4), one can obtain:

Kd = K0 +
n

∑
i=1

αiKi (6)

Considering that the loads at the initial state and the damaged state are identical, the
following equation can be easily obtained:

K0x0 = Kdxd = F0 (7)

Substituting Equation (6) into Equation (7) yields:

K0x0 = (K0 +
n

∑
i=1

αiKi)xd (8)

Then, Equation (8) can be rewritten as:

n

∑
i=1

αiKixd = K0∆x (9)

where ∆x = x0 − xd.
Here, Equation (9) is the deterministic static damage identification equation with

respect to the element damage indexes αi (i = 1, . . . , n).
To identify the damage of a beam structure, it is necessary to establish the initial

model of the structure at its intact status. However, compared with the true structure, the
modelling error of the initial model is unavoidable. Here, this modelling error refers to
the uncertainty of structural parameters. Because the practical structural parameters are
bounded regardless of whether they are material or geometrical, the structural parameters
can be assumed to be random variables ξ j(j = 1, 2, · · · , m) with beta distributions. m is
the number of stochastic variables corresponding to the initial modelling error. Clearly,
for the proposed method, the structural parameters can be of any distribution, such as the
lognormal distribution, according to actual situations. Under the above assumption, the
stiffness matrix K0 and the displacement vector x0 of the intact structure can be expressed
as the functions of the stochastic variables ξ j(j = 1, 2, · · · , m), respectively, as:

K0 = K0a +
m

∑
j=1

ξ jK0j (10)

x0 = x0a +
m

∑
j=1

ξ jx0j (11)

where K0a and x0a are the mean of the stiffness matrix K0 and the displacement vector x0,

respectively.
m
∑

j=1
ξ jK0j and

m
∑

j=1
ξ jx0j are the uncertain parts of K0 and x0, respectively. K0j

and x0j are the adjoint parts of K0 and x0 with respect to ξ j, respectively.
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The stochastic variables are assumed to be completely dependent, which means that
ξ j = ξ(j = 1, 2, · · · , m). Assume that K0b = [K01, K02, · · · , K0m] and x0b = [x01, x02, · · · , x0m].
Then, considering that the damage index αi is the function of the stochastic variable ξ, one
can rewrite Equation (8) as:

(K0a + ξK0b)(x0a + ξx0b) =

[
(K0a + ξK0b) +

n

∑
i=1

αi(ξ)Ki

]
xd (12)

The obtained Equation (12) is the stochastic damage identification equation with the
stochastic variable ξ related to the initial modelling error.

In practice, the measured static data will also result in the uncertainty of the damage
identification. The static measurement error and the initial modelling error are independent.
The measurement errors of the static data can be described by another independent random
variable η, which can be modelled as a beta distribution because the measurement errors
are bounded.

If the displacements of the damaged structure are measured, it can be represented as:

xd = xda + ξxdb (13)

where xda denotes the deterministic part of the measured displacement vector xd of the
damaged structure and ηxdb is the stochastic part of xd. xdb is the adjoint vector for the
random variable η.

Here, the damage index αi becomes the joint function of the stochastic variable ξ and
η. Substituting Equation (13) into Equation (12) leads to:

(K0a + ξK0b)(x0a + ξx0b) =

[
(K0a + ξK0b) +

n

∑
i=1

αi(ξ, η)Ki

]
(xda + ηxdb) (14)

Hence, the stochastic damage identification equation in Equation (14) is achieved
considering the uncertainty of the initial modelling error and the static measurement errors.

2.2. Homotopy Solution of the Stochastic Damage Identification Equation

Many stochastic finite element methods [34–40], such as the generalized spectral
stochastic finite element method [36] and stochastic reduced basis methods [37], may be
used to solve Equation (14). For a balance between efficiency and accuracy, it is recom-
mended in this paper to utilize a new proposed homotopy analysis algorithm to determine
the solution of the stochastic damage identification equation in Equation (14). The ho-
motopy analysis algorithm in the literature [38–40] can be used to establish a homotopy
relationship between the deterministic damage index and the stochastic damage index.

For convenience of homotopy analysis, Equation (14) can be rewritten as:

(S0 + ηS1)α = K0ax0a − T0 + ξ(T1 + T2 − T3) + ξ2T4 − ξηT5 − ηT6 (15)

where α = [α1, α2, · · · , αn], S0 = [K1xda, K2xda, . . . , Knxda], S1 = [K1xdb, K2xdb, . . . , Knxdb],
T0 = K0axda, T1 = K0ax0b, T2 = K0bx0a, T3 = K0bxda, T4 = K0bx0b, T5 = K0bxdb,
T6 = K0axdb and H0 = ξ(T1 + T2 − T3) + ξ2T4−ξηT5 − ηT6.

Now one can reconstruct a new function Ω(ξ, η, h, p) of the stochastic variables ξ, η and
the parameters h, p. When p = 0, Ω(ξ, η, h, 0) = α0; when p = 1, Ω(ξ, η, h, 1) = α(ξ, η, h).
α0 is the deterministic damage index vector in Equation (9), α0 = S−1

0 (K0ax0a − T0), which
can be solved from Equation (15).

Then, to construct the relationship between the initial approximation solution α0
and the stochastic damage index α(ξ, η, h) or the final stochastic solution of the damage
index vector:

(1− p)(S0Ω(ξ, η, h, p)− S0α0)
= ph[(S0 + ηS1)Ω(ξ, η, h, p)− (K0ax0a − T0 + H0)]

(16)
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where h is an auxiliary parameter and h 6= 0. Equation (16) is the zero-order deformation
equation, which represents the homotopy relationship between α0 and α(ξ, η, h).

The Maclaurin series expansion of the function Ω(ξ, η, h, p) with respect to the param-
eter p can be represented as:

Ω(ξ, η, h, p) = Ω(ξ, η, h, 0) +
∞

∑
k=1

(
Ω[k](ξ, η, h, 0)

k!

)
pk (17)

where k is the number of the order of the homotopy series expansion. Ω[k](ξ, η, h, 0) means
the k-th order partial derivative of Ω(ξ, η, h, p) with respect to p at p = 0, which can be
obtained by taking the k-th partial derivative of the zero-order deformation equation as
illustrated in the following derivation.

The first-order partial derivative of Equation (16) with respect to p can be expressed as:

−[S0Ω− S0α0] + (1− p)S0Ω[1]

= h[(S0 + ηS1)Ω− (K0ax0a − T0 + H0)] + ph(S0 + ηS1)Ω
[1] (18)

where Ω is the abbreviation of Ω(ξ, η, h, p). Letting p = 0, Equation (18) can be written as:

S0Ω[1]∣∣p=0 = h[(S0 + ηS1)α0 − (K0ax0a − T0 + H0)] (19)

Considering that S0α0 − (K0ax0a − T0) = 0, then:

Ω[1]∣∣p=0 = (−h)(ηα1 + H1) (20)

where α1 = −S−1
0 S1α0, H1 = S−1

0 H0. Then, Ω[1](ξ, η, h, 0) can be obtained.
Taking the partial derivative of the first-order deformation equation in Equation (18)

with respect to p yields:

− 2S0Ω[1]+(1 − p)S0Ω[2] = 2h(S0 + ηS1)Ω
[1] + ph(S0 + ηS1)Ω

[2] (21)

Equation (21) is the second-order deformation equation, according to which, letting
p = 0 leads to the second-order derivative of the function Ω(ξ, η, h, p) with respect to p
as follows:

Ω[2] ∣∣p=0 = 2(−h)(1 + h)(ηα1 + H1) + 2(−h)2
(

η2α2 + ηH2

)
(22)

where α2 = −S−1
0 S1α1, H2 = −S−1

0 S1H1.
Similar to the above steps, the third- and fourth-order derivatives of the function

Ω(ξ, η, h, p) with respect to p can be determined, respectively. When p = 0:

Ω[3]
∣∣p=0 = 6(−h)(1 + h)2(ηα1 + H1) + 12(−h)2(1 + h)

(
η2α2 + ηH2

)
+6(−h)3(η3α3 + η2H3

) (23)

Ω[4]
∣∣p=0 = 24(−h)(1 + h)3(ηα1 + H1) + 72(−h)2(1 + h)2(η2α2 + ηH2

)
+72(−h)3(1 + h)

(
η3α3 + η2H3

)
+ 24(−h)4(η4α4 + η3H4

) (24)

where α3 = −S−1
0 S1α2, α4 = −S−1

0 S1α4, H3 = −S−1
0 S1H2, H4 = −S−1

0 S1H3.
The other deformation equations Ω[k]

∣∣p=0 can be acquired in the same manner by
taking the k-th partial derivative of the zero-order deformation equation with respect to
the parameter p at p = 0.

Substituting Ω[k]
∣∣p=0 into Equation (17), and letting p = 1, the Maclaurin series

expansion of the function Ω(ξ, η, h, p) can be expressed as:

α(ξ, η, h) = Ω(ξ, η, h, 1) = α0 + βk,1(h)λ1 + βk,2(h)λ2 + · · ·+ βk,l(h)λl + · · · (25)
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where λl = ηlαl + ηl−1Hl(l ≥ 1), and βk,l(h)(l = 1, 2, · · · , k) is the approaching approxi-
mate function and can be given as follows:

βk,l(h) =


0 (t > k)

(−h)tk−t
∑

l=0

(
l + t− 1

l

)
(1 + h)l (1 ≤ t ≤ k)

1 (t < 0)

(26)

In regard to the approaching function βk,l(h), the homotopy parameter h can control
the convergence range and speed of the homotopy series in Equation (25), which shows
the superiority of the homotopy series over the traditional Taylor series. The limited
order terms are selected to improve the calculation efficiency in the damage identification
procedure. α(k)(ξ, η, h) can be used to represent the k-th order approximate solution of
the homotopy series. For the damage index of the i-th element, there is an inevitable
approximation error between the homotopy series solution αi(ξ, η, h) and the k-th order
approximate solution α(k),i(ξ, η, h); the relative error between them can be defined as:

Λi(ξ, η, h) =

∣∣∣∣∣αi(ξ, η, h)− α(k),i(ξ, η, h)
αi(ξ, η, h)

∣∣∣∣∣(i = 1, 2, · · · , n) (27)

where the homotopy parameter h can be achieved by minimizing the errors Λi(ξ, η, h)
(i = 1, 2, · · · , n).

Assume that the mean and standard deviation of the stochastic parameter vector
{ξ, η} are {µ1, µ2} and {σ1, σ2}, respectively. Then one can assume that ξϕ = µ1 + ϕσ1
and ηϕ = µ2 + ϕσ2 (ϕ = 1, 2, 3), which are three samples in a sample space of the random
variables ξ and η. The deterministic damage index αdi(ξϕ, ηϕ) of the i-th element with
respect to the three samples can be obtained by solving Equation (14). These damage
indexes are regarded as the exact solutions. Then, the k-th order homotopy approximate
solutions α(k),i(ξϕ, ηϕ, h)(i = 1, 2, · · · , n; ϕ = 1, 2, 3) of the damage index of the i-th element
can be obtained, which only depends on the parameter h.

To obtain the optimal solution of the parameter h, the objective functions Wϕ(h) are
defined as:

Wϕ(h) =
n
∑

i=1

(
αdi
(
ξϕ, ηϕ

)
− α(k),i(ξϕ, ηϕ, h)

)2
(ϕ = 1, 2, 3) (28)

The appropriate value of h can be found by optimizing the objective functions Wϕ(h)
so that the error functions Λi(ξ, η, h)(i = 1, 2, . . . , n) are as small as possible.

2.3. Static Condensation of Damage Identification

In actual damage identification of beam structures, only the responses at limited
measurement points can be recorded. Therefore, a static condensation method [41] is used
to eliminate unmeasured responses. First, rewriting the matrices in Equation (1) as the
partitioned matrices, Equation (1) becomes:[

K0vv K0vθ

K0θv K0θθ

]{
x0v
x0θ

}
=

{
F0v
F0θ

}
(29)

where v and θ denote the numbers of measured and unmeasured DOFs, respectively, and
v + θ = N. K0vv and K0vθ are the submatrices of K0 with respect to the measured DOFs,
respectively. K0θv and K0θθ are the submatrices of K0 corresponding to the unmeasured
DOFs, respectively. x0v and x0θ are the measured and unmeasured parts of x0, respectively.
F0v and F0θ are the measured and unmeasured static force vectors, respectively. Considering
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that for an actual intact structure, only the vertical load is added, and the unmeasured force
vector F0θ equals zero, Equation (30) can be obtained by Equation (29), as:

x0θ = −K−1
0θθK0θvx0v (30)

Substituting x0θ in Equation (30) into Equation (29) yields:

(K0vv −K0vθK−1
0θθK0θv)x0v = F0v (31)

Further, Equation (31) can be rewritten as:

K0vx0v = F0v (32)

where K0v = K0vv −K0vθK−1
0θθK0θv.

Similarly, by condensing the stiffness matrix Kd in Equation (2), the submatrix Kdv
corresponding to K0v can be expressed as:

Kdv = Kdvv −KdvθK−1
dθθKdθv (33)

where Kdvv and Kdvθ are the submatrices of Kd with respect to the measured DOFs, re-
spectively. Kdθv and Kdθθ are the submatrices of Kd corresponding to the unmeasured
DOFs, respectively.

Using Equations (6) and (33) can be rewritten as:

Kdv = (Kavv +
n

∑
i=1

αiKivv)− (Kavθ +
n

∑
i=1

αiKivθ)(Kaθθ +
n

∑
i=1

αiKiθθ)
−1(Kaθv +

n

∑
i=1

αiKiθv) (34)

The partial derivative of Equation (34) with respect to αi is expressed as:

∂Kdv
∂αi

∣∣∣∣
αi=0

= Kivv −KiθvK−1
0θθK0θv −K0vθK−1

0θθKiθv + K0vθK−1
0θθKiθθK−1

0θθK0θv (35)

Then, the first-order Taylor expansion of Kdv at αi = 0 can be written as:

Kdv = Kdv|αi=0 +
n

∑
i=1

αi
∂Kdv
∂αi

∣∣∣∣
αi=0

(36)

Substituting Equation (36) into Equation (7) yields:

K0vx0v = (Kdv|αi=0 +
n

∑
i=1

αi
∂Kdv
∂αi

∣∣∣∣
αi=0

)xdv (37)

When αi = 0, it means that the stiffness of initial and damaged structure does not

change, which is Kdv|αi=0 = K0v. Assuming that Kvi =
n
∑

i=1
αi

∂Kdv
∂αi

∣∣∣
αi=0

and ∆xv = x0v− xdv,

Equation (37) is rewritten as:
n

∑
i=1

αiKvixdv = K0v∆xv (38)

The above Equation (38) is similar to Equation (9), and is the deterministic damage
identification equation for the damage index after static condensation.

When considering the uncertainty of the initial modelling error and the static mea-
surement errors, Equation (38) can be rewritten as:

n

∑
i=1

αi(ξ, η)Kvi(xdav + ηxdbv)= (K0av + ξK0bv)[(x0av + ξx0bv)− (xdav + ηxdbv)] (39)

where x0av is the mean part of the measured displacement vector x0v, x0bv is the adjoint
vector of x0v with respect to ξ. K0av and xdav are the mean parts of the stiffness matrix K0v
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and the measured displacement vector xdv, respectively. K0bv is the adjoint matrix of K0v
with respect to ξ, and xdbv is the adjoint vector of xdv with respect to η.

Then, following the procedure in Section 2.2, the stochastic damage index α can
be acquired.

2.4. L1 Regularization Algorithm

In the process of damage identification, it is often encountered that the num-
ber of measured degrees of freedom is inconsistent with the number of damage in-
dexes. The mentioned problem will cause the damage identification equations, including
Equations (9), (12), (14) and (38), to become ill-posed equations. To solve this problem
in damage identification and ensure the accuracy of the stochastic damage identifi-
cation, the L1 regularization algorithm in the literature [42–44] is introduced to solve
Equations (9), (12), (14) and (38).

Equation (39) can be simplified as the form of Lα = R, where L and R are all
known matrices. Here L= [Kv1(xdav + ηxdbv), Kv2(xdav + ηxdbv), · · · , Kvn(xdav + ηxdbv)],
R = (K0av +ξK0bv)[(x0av + ξx0bv)− (xdav + ηxdbv)]. α can be solved by minimizing the
objective function ‖Lα = R‖. To conduct a regularization strategy, the objective function is
redefined as:

J(α) = ‖Lα-R‖2
2 + τ‖α‖1

1 (40)

where τ is the regularization parameter, which satisfies τ > 0. The regularization parameter
can be determined by the L-curve criterion [42]. τ can control the trade-off between the
sparsity of the solution and the amplitude of residual norm, where the term ‖Lα-R‖2

2 forces
the residual to be small, and the term ‖α‖1

1 enforces the sparsity of the solution.

2.5. Probability-Based Damage Identification

To describe the damage possibility of structures, the definition of failure probability in
structural reliability [45,46] is introduced into the evaluation of damage probability. That is,
the probability of structural damage at the element level can be defined as the probability
that, for the i-th element, the stiffness parameter kdi at damaged status is less than the intact
stiffness parameter k0i. Therefore, the probability of damage, Pi

d, of the i-th element in the
structure can be written as:

Pi
d = P(k0i > kdi)(i = 1, 2, · · · , n) (41)

where the stiffness parameter kdi and k0i are random scalars, such as the elastic modulus of
a beam element. In accordance with Equation (41), the probability of damage of the i-th
element can be calculated, using Equation (42), as:

Pi
d =

s

Kdi<K0i

fkd
(kdi) fkd

(k0i)dkdidk0i

=
∫ +∞

0 [
∫ K0i

0 fkd
(kdi)dkdi] fk0(k0i)dk0i

=
∫ +∞

0 Fkd
(k0i) fka(k0i)dk0i

(42)

where fk0(·) and fkd
(·) represent the probability density functions (PDFs) of the stiffness

k0i and kdi, respectively. Fkd
(·) is the probability distribution function of the stiffness kdi.

In addition, the probability of damage can be equivalently determined by:

Pi
d = P(αi < 0) (43)

From the process of the above derivation, it is found that no restriction is imposed on
the probability distribution type of k0i, kdi, and αi. Usually, the probability distribution of
structural parameters in the initial model is assumed to be symmetric, so that the damage
index of a structural element at intact status can be regarded as a random variable with
zero mean [47]. Then, its corresponding damage probability Pi

d is 0.5. When Pi
d is less than
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0.5, which indicates that the chance of occurrence of damage is low, one can regard the
structural element as intact. Given that Pi

d equals 1, the element is judged as absolutely
damaged. Therefore, the damage probability of each element of the beam structure varies
in the range from 0.5 to 1.0. To improve the sensitivity of damage identification, a new
index, θi

d, is presented and named the damage probability index, which is defined as
(Pi

d − 0.5)/0.5, and the value of θi
d is between 0 and 1. When the value of θi

d in the i-th
element is close to 1.0, it means that the element is damaged. On the contrary, when θi

d
approaches zero, the element keeps an intact state. According to a number of damage
identification simulations, the threshold of the damage probability index is designed to be
0.5, which indicates that the possibility of damage is greater than the intact possibility.

To illustrate the steps of the proposed stochastic damage identification method, the
flowchart of the method is plotted in Figure 1. The realization of this new method was
implemented by the MATLAB software in this study. For practical structures, a large
professional software package such as ANSYS would need to be used to implement the
proposed method in the future.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 26 
 

 

 Obtain homotopy solution of the stochastic damage identification equations (Eq. (18)-(24))

Finite element modelling of deterministic initial beam structure.
Input parameters K0,   F0

Consider  initial modelling error ξK0b             

 Homotopy analysis algorithm

Consider limited measurement points

Establish stochastic static damage identification  equations by static condensation  (Eq. (39))

Establish stochastic  static damage identification  equations (Eq. (14))

 L1 regularization algorithm

Obtain stochastic damage indexes α

Obtain the damage probability index of each element (Eq. (42))

Consider static measurement errors ηxdb      

 
Figure 1. The flowchart of the proposed stochastic damage identification method. 

3. Numerical Examples 
To illustrate the proposed stochastic damage identification method, two numerical 

examples of beam structures are provided, including a simply supported beam and a con-
tinuous beam with various cross-sections. All cases in the examples assume that the ran-
domness of beam structures is caused by the uncertainty of the elastic modulus, and both 
the modelling error and the measurement error are taken into account. In addition, it is 
proposed that the structural damage is caused by the reduction of the elastic modulus or 
bending rigidity of beam elements. As a matter of convenience, the proposed stochastic 
damage identification method is abbreviated as HDI. To demonstrate the accuracy of HDI, 
the direct Monte Carlo (MC) simulation method is used to provide a benchmark for the 
statistics of the stochastic damage indexes. To compare the HDI method, the first-order 
perturbation method (FPDI) is used for damage identification. 

3.1. A simply Supported Beam 
Consider a simply supported beam with a rectangular cross section, which is shown 

in Figure 2. The structural parameters are as follows: the length of beam L = 5 m, the cross-
sectional area 0.15 m × 0.25 m, the moment of inertia 1.94 × 10-4 m4, and the elastic modulus 
2.8 × 104 MPa. The simply supported beam is divided into eight Euler–Bernoulli beam 
elements and nine nodes, and each node contains two degrees of freedom, including a 
vertical displacement and a rotational angle. It is assumed that at the initial status, the 
randomness of the stiffness of the simply supported beam is only caused by the uncer-
tainty of the elastic modulus, and the elastic moduli of all elements are completely de-
pendent, which are related to a stochastic variable of beta distribution. In static tests, two 
vertical concentrated loads P = 100 kN are applied at nodes 3 and 7, respectively, and only 
the vertical displacement of each node is measured. The rotational DOFs at all nodes are 
removed by the static condensation technique. 

Figure 1. The flowchart of the proposed stochastic damage identification method.

3. Numerical Examples

To illustrate the proposed stochastic damage identification method, two numerical
examples of beam structures are provided, including a simply supported beam and a
continuous beam with various cross-sections. All cases in the examples assume that the
randomness of beam structures is caused by the uncertainty of the elastic modulus, and
both the modelling error and the measurement error are taken into account. In addition, it
is proposed that the structural damage is caused by the reduction of the elastic modulus or
bending rigidity of beam elements. As a matter of convenience, the proposed stochastic
damage identification method is abbreviated as HDI. To demonstrate the accuracy of HDI,
the direct Monte Carlo (MC) simulation method is used to provide a benchmark for the
statistics of the stochastic damage indexes. To compare the HDI method, the first-order
perturbation method (FPDI) is used for damage identification.
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3.1. A Simply Supported Beam

Consider a simply supported beam with a rectangular cross section, which is shown
in Figure 2. The structural parameters are as follows: the length of beam L = 5 m, the
cross-sectional area 0.15 m × 0.25 m, the moment of inertia 1.94 × 10−4 m4, and the elastic
modulus 2.8 × 104 MPa. The simply supported beam is divided into eight Euler–Bernoulli
beam elements and nine nodes, and each node contains two degrees of freedom, including
a vertical displacement and a rotational angle. It is assumed that at the initial status, the
randomness of the stiffness of the simply supported beam is only caused by the uncertainty
of the elastic modulus, and the elastic moduli of all elements are completely dependent,
which are related to a stochastic variable of beta distribution. In static tests, two vertical
concentrated loads P = 100 kN are applied at nodes 3 and 7, respectively, and only the
vertical displacement of each node is measured. The rotational DOFs at all nodes are
removed by the static condensation technique.
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Figure 2. A simply supported beam structural model.

3.1.1. Effect of Damage States

To study the effectiveness of the proposed HDI method for identifying different
damage locations and degrees, three various damage cases are listed in Table 1, where the
reduction ratio of the elastic modulus is used to describe the damage degree of element. The
reduction ratio of the elastic modulus of each element is defined as the relative error of the
elastic modulus of the actual element to that of the same element at the initial mean status.
It is assumed that the coefficient of variance (COV) of the elastic modulus for each element
is 0.05 at the initial status, and the COVs of the static measurement errors of the beam after
damaged are also 0.05. The static measurement errors are modelled as a beta distribution.
The proposed HDI method and the MC method are used for damage identification. The
identification results of the MC method with 1 × 105 samples are used as a benchmark.
The results of the damage identification using the two methods, which include the means
and standard deviations (SD) of each element, are shown in Figures 3 and 4, respectively.

Table 1. Reduction ratio of the elastic modulus of each element under the three cases (%).

Case 1 2 3 4 5 6 7 8

Case 1 0 0 0 20 0 0 0 0
Case 2 5 0 0 15 10 0 5 0
Case 3 5 10 15 25 20 15 10 5

From Figures 3 and 4, it is derived that for the mean of damage index, the relative
errors between the identified results by the HDI method and the MC method are about
0.1% under the three cases. In addition, for the standard deviation of damage index, the
corresponding relative errors are less than 0.7%. These results indicate that identified
results under the three cases using the HDI method are consistent with those of the MC
method.

To further illustrate the effectiveness of the HDI method, the PDFs of the damage
index of the 4th element in the three cases are plotted in Figure 5. It is found from Figure 5
that the PDF curves of the damage index of the 4th element using the HDI method are
close to those of the MC method.



Sensors 2021, 21, 2366 12 of 25Sensors 2021, 21, x FOR PEER REVIEW 13 of 26 
 

 

   
(a) (b) (c) 

Figure 3. The mean of the damage index of each element under the three cases: (a) Case 1; (b) Case 2; (c) Case 3. 

   
(a) (b) (c) 

Figure 4. The standard deviation of the damage index of each element under the three cases: (a) Case 1; (b) Case 2; (c) 
Case 3. 

   
(a) (b) (c) 

 Figure 5. The PDFs of the damage index of the 4th element under the three cases: (a) Case 1; (b) Case 2; (c) Case 3. 

   
(a) (b) (c) 

Figure 6. The damage probability index of each element under the three cases: (a) Case 1; (b) Case 2; (c) Case 3. 

1 2 3 4 5 6 7 8
0.00

0.05

0.10

0.15

0.20

M
ea

n 
of

 d
am

ag
e 

in
de

x

Element number

 HDI
 MC

1 2 3 4 5 6 7 8
0.00

0.05

0.10

0.15

M
ea

n 
of

 d
am

ag
e 

in
de

x
Element number

 HDI
 MC

1 2 3 4 5 6 7 8
0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n 
of

 d
am

ag
e 

in
de

x

Element number

 HDI
 MC

1 2 3 4 5 6 7 8
0.00

0.02

0.04

0.06

0.08

0.10

St
an

da
rd

 d
ev

ia
tio

n 
of

  d
am

ag
e 

in
de

x

Element number

 HDI
 MC

1 2 3 4 5 6 7 8
0.00

0.02

0.04

0.06

0.08

0.10

St
an

da
rd

 d
ev

ia
tio

n 
of

  d
am

ag
e 

in
de

x

Element number

 HDI
 MC

1 2 3 4 5 6 7 8
0.00

0.02

0.04

0.06

0.08

0.10

St
an

da
rd

 d
ev

ia
tio

n 
of

  d
am

ag
e 

in
de

x
Element number

 HDI
 MC

PD
F

-0.1 0 0.1 0.2 0.3 0.4
The 4th element damage index

0

1

2

3

4

5

6

7

HDI
MC

PD
F

1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

D
am

ag
e 

pr
ob

ab
ili

ty
 in

de
x

Element number

 HDI
 MC

1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

D
am

ag
e 

pr
ob

ab
ili

ty
 in

de
x

Element number

 HDI
 MC

1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

D
am

ag
e 

pr
ob

ab
ili

ty
 in

de
x

Element number

 HDI
 MC

Figure 3. The mean of the damage index of each element under the three cases: (a) Case 1; (b) Case 2; (c) Case 3.
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Figure 4. The standard deviation of the damage index of each element under the three cases: (a) Case 1; (b) Case 2; (c) Case 3.
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Figure 5. The PDFs of the damage index of the 4th element under the three cases: (a) Case 1; (b) Case 2; (c) Case 3.

Finally, the damage probability indexes of all of the elements in the three cases are
shown in Figure 6. From Figure 5, it is observed that the damage probability indices of
all of the elements determined by the proposed method agree with the results of the MC
method very well. It is also found from Figure 6 that the damage probability indexes of the
4th element under the three cases are about 1.0, which means that the occurrence of damage
is almost absolute. With the exception of the 1st and 7th elements in Case 2, the assumed
damage elements are confirmed by the corresponding damage probability indexes, which
are more than 0.5, in all three cases.
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Figure 6. The damage probability index of each element under the three cases: (a) Case 1; (b) Case 2; (c) Case 3.

It is worth mentioning that the proposed method can also be applied to other types of
beam structures, and is not limited to the Euler–Bernoulli beam. In addition, to determine
the damage indexes of structural elements, the damage identification equation has to be
solved using all measured nodal displacements. Therefore, the nodal displacement cannot
be regarded as a damage sensitive feature for the proposed method.

3.1.2. Effect of Uncertainty of Measurement Errors

The effect of uncertainty of measurement errors on damage identification results of the
simply supported beam was studied using the proposed HDI method and the MC method
at different levels of uncertainties. For the uncertainties, the COVs of the measurement
errors of the static displacements are assumed to be 0.1 and 0.15, respectively. The simulated
damage situation is the same as that in Case 3 in Section 3.1.1. Both the measurement errors
and the modelling error are assumed as to have beta distributions. The COV of the initial
modelling error is still 0.05.

The mean and standard deviation of the damage index of each element computed by
the proposed method are plotted in Figures 7 and 8, respectively. From Figures 7 and 8,
it is found that the mean and standard deviation of the damage index of each element
identified by the proposed HDI method coincide with those by the MC method. With
the increment of the uncertainty of the measurement errors, the standard deviation or
fluctuation of the damage index of each element will increase. The PDF of the damage
index of the 4th element at different uncertainties is shown in Figure 9. Figure 9 shows
that when the COV is 0.1, the PDF curve of the damage index of the 4th element using the
proposed method is in a very good agreement with that of the MC method. When the COV
reaches 0.15, the PDF curve of the damage index of the 4th element using the proposed
method has little deviation from that of the MC method. The damage probability index of
each element for different uncertainties is plotted in Figure 10. It is observed from Figure 10
that the results of both methods are almost the same, and when the COV becomes large,
the damage probability index of each element will decrease. When the COV is 0.1, the 1st
and 8th elements cannot be identified as damaged because the related damage probability
indexes are less than 0.5. Correspondingly, due to the small damage probability indexes, it
is impossible to determine the assumed damage in the 1st, 2nd, 7th, and 8th elements in
the case that the COV is 0.15.
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Figure 7. The mean of the damage index of each element at different uncertainties: (a) COV = 0.1; (b) COV = 0.15.
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Figure 8. The standard deviation of the damage index of each element at different uncertainties: (a) COV = 0.1;
(b) COV = 0.15.
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Figure 9. The PDF of the damage index of the 4th element at different uncertainties: (a) COV = 0.1; (b) COV = 0.15.
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Figure 10. The damage probability index of each element at different uncertainties: (a) COV = 0.1; (b) COV = 0.15.

3.1.3. Effect of Uncertainty of Modelling Error

The effectiveness of identifying damage of the proposed method when the COV of the
modelling error increases from 0.05 to 0.15 is studied in this section. The assumed damage
case is the same as that in Case 3 in Section 3.1.1. The COV of the measurement errors is
assumed as 0.05. Using the proposed HDI method and the MC method, the mean and
standard deviation of the damage index of each element, the PDF of the 4th element, and
the damage probability index of each element are shown in Figure 11a–d, respectively. First,
from Figure 11a–d, it is found that the results from the proposed method almost coincide
with those using the MC method. When comparing the results in Figure 11a–d with those
in Figures 3c, 4c, 5c and 6c, where the COV of the modelling error is 0.05, respectively, it
can be observed that when the COV of the modelling error increases, although the mean
of the damage index of each element does not change much, the standard deviation of
the damage index increases significantly, and the maximum value changes from 0.065 to
0.172. The shape of the PDF of damage index changes from symmetric to asymmetric. In
particular, the damage probability index declines too much so that the damage probability
indices of the 1st, 2nd, 7th, and 8th elements are less than 0.5, from which one cannot
assume that these elements are damaged as discussed in Case 3 in Section 3.1.1.

3.2. A Continuous Beam with Variable Cross-Section

Consider a two-span continuous beam with variable cross-section as shown in Figure 12.
It is supposed that the cross-sectional areas of the left and right segments in the beam
are 0.15 m × 0.25 m and 0.15 m × 0.35 m, respectively. The cross section of the beam is
rectangular. The length, L, of each span is 1.9 m. The elastic modulus is 2.8 × 104 MPa.
The continuous beam is divided into 12 identical beam elements and 13 nodes. Each node
has two degrees of freedom, a vertical displacement, and a rotational angle. Two vertical
concentrated loads, P = 100 kN, are applied to the mid of two spans, respectively. The COV
of the modelling error of the continuous beam is assumed to be 0.05. The COVs of the
measurement errors are 0.05, 0.1, and 0.15, respectively, indicating that the uncertainty of the
measurement errors changes from small to large. To describe the damage degree of the beam
element, the reduction ratio of the elastic modulus of each element is listed in Table 2. Three
methods, the proposed HDI method, the FPDI method, and the MC method, are provided
to implement the stochastic damage identification of a continuous beam with a variable
cross-section.
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Figure 11. The statistics of the damage index of each element in the simply supported beam: (a) mean; (b) standard
deviation; (c) PDF; (d) damage probability index.
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Table 2. The reduction ratio of the elastic modulus of elements in the continuous beam.

Element Number 1 2 3 4 5 6 7 8 9 10 11 12

Reduction ratio 5% 10% 20% 25% 20% 5% 5% 10% 20% 20% 10% 5%

Considering that the COVs of the measurement errors are 0.05, 0.1, and 0.15, respec-
tively, the mean and standard deviation of the damage index of each element computed
using the proposed method are plotted in Figures 13 and 14, respectively. The PDF of
the damage index of the 10th element for different uncertainties is shown in Figure 15.
The damage probability index of each element at the three uncertainty levels is shown in
Figure 16.

From Figures 13 and 14, it is found that when the COV of the measurement error is
0.05 or the uncertainty of measurement errors is small, for both the mean and standard
deviation of the damage index of each element, the results from the FPDI method agree
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very well with those from the suggested HDI method and are very close to the results
obtained by the MC method. However, when the COV of the measurement error equals
0.15 or the measurement errors become relatively large, the means of damage index by the
FPDI method gradually deviate from the results by the MC method compared with those
from the HDI method. The more obvious difference between the FPDI method and the
HDI method can be observed from the PDFs of the damage index of the 10th element as
shown in Figure 15. It is seen that when the COV varies from 0.05 to 0.15, for the PDF of
the damage index of the 10th element, the result of the FPDI method becomes different
from that of the MC method, but the result of the HDI method is still very close to that of
the MC method.
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Figure 13. The mean of the damage index of each element for different uncertainties: (a) COV = 0.05; (b) COV = 0.1;
(c) COV = 0.15.
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Figure 14. The standard deviation of the damage index of each element for different uncertainties: (a) COV = 0.05;
(b) COV = 0.1; (c) COV = 0.15.
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Figure 15. The PDF of the damage index of the 10th element for different uncertainties: (a) COV = 0.05; (b) COV = 0.1;
(c) COV = 0.15.
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Figure 16. The damage probability index of each element at different uncertainties: (a) COV = 0.05; (b) COV = 0.1;
(c) COV = 0.15.

From Figure 16, it is found that when the COV of the measurement error varies from
0.05 to 0.1, the assumed small damages in the 1st, 6th, 7th, and 12th elements cannot be
confirmed. When the COV reaches 0.15, even if the assumed damage degree in the 2nd
and 11th elements is 10%, these elements cannot be judged as damaged because the related
damage probability indexes are less than the threshold value of 0.5.

Further, to directly show the influence of the vertical displacement on the damage
of the continuous beam, the mean and standard deviation of nodal vertical displacement
are plotted in Figure 17, where the COV of measurement errors is 0.05. As can be seen
from Figure 17a, although the vertical displacement difference between the 6th and 8th
nodes in the intact state and the damaged state is very small, the proposed method can still
identify 5% of the damage degree in the 6th and 7th elements, according to the damage
probability indexes of the 6th and 7th elements shown in Figure 16a, which are more than
0.5. The residuals between the vertical displacements of the 3th to 5th nodes at the intact
and damaged states are also large and discernible because the assumed damage extent at
that position is large.
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Figure 17. The statistics of the vertical displacement of each node in the continuous beam: (a) mean; (b) standard deviation.

Additionally, to illustrate the influence of the modelling error on the damage identifi-
cation, assuming that the COV of the initial modelling error of the continuous beam is 0.15
and the COV of the measurement errors is 0.05, the statistics of the identified results using
the HDI method and the FPDI method are plotted in Figure 18. From Figure 18a,c, it is
found that the mean of the damage index of each element and the PDF of the damage index
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of the 10th element using the HDI method are approaching to those of the MC method
more closely compared with those of the FPDI method. This finding also demonstrates
that the HDI method has higher accuracy than the FPDI method in the case that the initial
modelling error is relatively large.
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Figure 18. The statistics of damage index of each element in the continuous beam: (a) mean; (b) standard deviation; (c) PDF;
(d) damage probability index.

In addition, it is found from Figure 18d that compared with the results in Figure 16a,
where the measurement error is 0.05 and relatively small, the damage probability indexes
in the 1st, 2nd, 6th, and 7th elements reduce significantly and are less than 0.5. These
findings show that, in addition to the increase in the initial modelling error, the possibility
of identifying damage decreases.

To study the computational cost of the proposed HDI method, for this modelling
error situation, the computational time of the HDI method, the FPDI method, and the MC
method are listed in Table 3. Although the FPDI method is only suitable for the damage
identification problems with small uncertainty, it is generally considered to be an efficient
method. It can be seen from Table 3 that the time consumption of the FPDI method is 443 s,
which is about one-tenth that of the MC method. However, although the calculation time of
the HDI method is 90 s longer than that of the FPDI method, the accuracy of the proposed
method is significantly higher than that of the FPDI method, as shown in Figure 18. In
addition, it can be seen from Table 3 that the calculation efficiency of the HDI method is
much higher than that of the MC method.
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Table 3. Computational time (s).

Method HDI FPDI MC

CPU time 534 443 4158

4. Experimental Verification

As described in this section, a series of static loading tests of a simply supported
concrete beam, which is shown in Figure 19, were conducted to testify the effectiveness of
the proposed identification method. These experimental tests comply with the test standard
in the literature [48]. For the testing beam as shown in Figure 16, the length was 2200 mm,
the span was 1900 mm, and the cross-sectional area is 150 × 250 mm2. Using a number of
strength tests of the concrete used in the construction, one can determine the mean value
of the elastic modulus as 2.8 × 104 MPa. In the loading tests, only vertical deflections
of the beam were measured. The mechanical model of the beam is shown in Figure 19b,
where the simply supported beam is divided into eight Euler–Bernoulli elements with nine
nodes. When the applied load P equaled 32 kN, the vertical deflections at seven nodes were
measured several times using the dial gauges, and the measured vertical deflections and
their statistics are listed in Table 4. Here it is supposed that all of the measured deflections
are completely dependent and are assumed to have a beta distribution. The deflections of
the tested beam can be measured using the vision-based measurement technique as a novel
measurement mean [49,50]. Based on the actually measured concrete strength values, the
COV of the elastic modulus in the initial beam element was assumed to be 0.1.
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Figure 19. The static loading test of a simply supported concrete beam: (a) loading test; (b) mechanical
model of the simply supported beam.
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Table 4. Measured vertical deflections and their statistic values in the case that P = 32 kN (mm).

No.
Number of Node

2 3 4 5 6 7 8

1 8.914 17.413 21.181 23.171 21.748 16.117 8.581
2 9.785 17.528 25.648 27.824 25.138 19.632 10.251
3 12.032 21.845 27.361 28.752 26.843 20.856 11.732

Mean 10.243 18.929 24.730 26.582 24.576 18.868 10.188
S.D 1.314 2.063 2.605 2.442 2.118 2.009 1.287

COV 0.128 0.109 0.105 0.092 0.086 0.107 0.126

Using the proposed HDI method, the FPDI method, and the MC method, the mean
and standard deviation of the damage index of each element were calculated and are
plotted in Figure 20. From Figure 20, it can be seen that the identified damaged elements
are the 3rd, 4th, 5th, and 6th elements, which are located in the middle region of the simply
supported beam. For the proposed method, the means of the damage indexes of the four
elements range from 0.175 to 0.29, and their standard deviations range from 0.8 to 1.1.
Because the means of the damage indices of the 1st, 2nd, 7th, and 8th elements are negative
and near to zero, the damage situations of the 3rd, 4th, 5th, and 6th elements are discussed
in the following paragraph. In addition, from Figure 20 it is found that the statistical
results from the HDI method are closer to those of the MC method than that of the FPDI
method, which indicates that the HDI method is better than the FPDI method in terms of
computational accuracy.
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Figure 20. The mean and standard deviation of the damage index of each element with three different methods: (a) mean;
(b) standard deviation.

The PDFs of the damage indices of the 3rd, 4th, 5th, and 6th elements are shown in
Figure 21, and the corresponding damage probability indexes are plotted in Figure 22.
From Figures 21 and 22, it is observed that the damage probability indexes of the four
elements are large and far greater than 0.5. For the HDI method, the damage probability
index of the 4th element is close to 1, and the damage probability indexes of other three
elements vary from 0.86 to 0.95, which means that all four elements are definitely damaged.
It is also obviously seen from Figures 21 and 22 that through comparison with the identified
damages of the MC method, the results from the HDI method have higher probability of
damage than those using the FPDI method.
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Figure 21. The PDFs of the damage indexes of the elements with three different methods: (a) the 3rd element; (b) the 4th
element; (c) the 5th element; (d) the 6th element.
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To check the identification effectiveness of the proposed HDI method, the crack status
of the beam under different loads was recorded and is shown in Figure 23, where the
marked numbers 4600, 4900, and 7200 indicate that the load P was 46, 49, and 72 kN,
respectively. The cracks in the blue boxes occur when the load P is 32 kN. According to the
literature [51] and the testing results, it was found that, overall, the beam is still located
in an elastic or weak nonlinear status, which makes the proposed method available for
damage identification. It can be found that the lengths of cracks along the height of beam
are not significantly different, which means that the extent of damage of the beam locations
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corresponding to the 3rd, 4th, 5th, and 6th elements are almost the same. This phenomenon
is consistent with the identified results using the proposed HDI method.
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Figure 23. The cracks on the front of the concrete simply supported beam.

Similar to this experiment, relatively large uncertainty also exists in the measurement
of real bridges, as illustrated in the reference [50]. It is expected that the proposed stochastic
damage identification method could be used to identify the damage at the element or region
level in an actual bridge in the future. In the damage identification of actual bridges, one
still needs to solve problems related to sensor distribution, environmental conditions, etc.

5. Conclusions

This paper focuses on a novel damage identification approach of beam structures using
uncertain static measurement data. This proposed new static damage identification method
considers not only the measurement errors but also the initial modelling error, and regards
them as random. The stochastic damage identification equations with respect to the damage
indexes are established. A new homotopy analysis algorithm is used to solve the stochastic
damage identification equations. During the process, a static condensation technique
and the L1 regularization method are employed to deal with the limited measurement
data and the ill-posed problems. Two numerical examples, a simply supported beam and
a continuous beam, are provided to demonstrate the identification effectiveness of the
proposed HDI method. Furthermore, a series of static tests of a simply supported concrete
beam are implemented to verify the new stochastic identification method. The following
conclusions can be drawn:

(1) The proposed HDI method is suitable for the structures with various damage
degrees. However, if the uncertainty of the measurement errors and the modelling error is
high, small damage will be suppressed and cannot be identified.

(2) In comparison to the FPDI method, the HDI method can ensure better accuracy
in the damage identification of the beam with relatively large measurement errors and
modelling error.

(3) On the premise of ensuring the accuracy of damage identification, the computa-
tional efficiency of the proposed HDI method is higher than that of the MC method.

(4) The identification results of the tested simply supported concrete beams using the
HDI method are consistent with the phenomena observed in the static experiment.
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