Performance Evaluation of Deep Learning-Based Prostate Cancer Screening Methods in Histopathological Images: Measuring the Impact of the Model’s Complexity on Its Processing Speed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. CNN Models
2.3. Benchmark
3. Results
3.1. PROMETEO Evaluation
3.2. Performance Comparison for Different State-of-the-Art Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
AUC | Area Under Curve |
CAD | Computer-Aided Diagnosis |
CNN | Convolutional Neural Network |
CPU | Central Processing Unit |
DL | Deep Learning |
DRE | Digital Rectal Examination |
GB | Gigabyte |
GGS | Gleason Grading System |
GPU | Graphic Processing Unit |
H&E | Hematoxylin and Eosin |
PC | Personal Computer |
PCa | Prostate Cancer |
PSA | Prostate-Specific Antigen |
RNN | Recurrent Neural Network |
TPU | Tensor Processing Unit |
WHO | World Health Organization |
WSI | Whole-Slide Image |
Appendix A. PROMETEO Evaluation
Device | CPU | GPU |
---|---|---|
A | Intel® Core™ i7-8850U @ 1.80 GHz 4 cores, 8 threads | - |
B | Intel® Core™ i9-7900X @ 3.30 GHz 10 cores, 20 threads | - |
C | Intel® Core™ i7-6700HQ @ 1.20 GHz 4 cores, 8 threads | - |
D | Intel® Core™ i7-6700HQ @ 2.60 GHz 4 cores, 8 threads | - |
E | Intel® Core™ i5-6500 @ 3.20 GHz 4 cores, 4 threads | - |
F | Intel® Core™ i7-4770K @ 3.50 GHz 4 cores, 8 threads | - |
G | Intel® Core™ i7-8700K @ 3.70 GHz 6 cores, 12 threads | - |
H | Intel® Core™ i7-4970 @ 3.60 GHz 4 cores, 8 threads | - |
I | Intel® Core™ i9-7900X @ 3.30 GHz 10 cores, 20 threads | NVIDIA® GeForce™ GTX 1080 Ti 11 GB GDDR5X |
J | AMD® Ryzen™ 9 3900X @ 4.20 GHz 12 cores, 24 threads | NVIDIA® GeForce™ GTX 1080 Ti 11 GB GDDR5X |
K | Intel® Core™ i5-6500 @ 3.20 GHz 4 cores, 4 threads | NVIDIA® GeForce™ GT 730 2 GB GDDR5 |
L | Intel® Core™ i7-4770K @ 3.50 GHz 4 cores, 8 threads | NVIDIA® GeForce™ GTX 1080 Ti 11 GB GDDR5X |
M | Intel® Core™ i7-8700K @ 3.70 GHz 6 cores, 12 threads | NVIDIA® GeForce™ GTX 1080 Ti 11 GB GDDR5X |
N | Intel® Core™ i7-4970 @ 3.60 GHz 4 cores, 8 threads | NVIDIA® GeForce™ RTX 2060 6 GB GDDR6 |
Patch | WSI | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Read | Score | Stain Normalization | Prediction | Read | Score | Stain Normalization | Prediction | |||||||||
Device | Avg | Std | Avg | Std | Avg | Std | Avg | Std | Avg | Std | Avg | Std | Avg | Std | Avg | Std |
A | 0.00120757 | 0.00311363 | 0.00585298 | 0.00502059 | 0.00512905 | 0.00418173 | 0.01730045 | 0.00850617 | 25.8035576 | 4.33829335 | 7.68691321 | 2.50054828 | 6.74114185 | 2.1823579 | 22.1192591 | 6.90573801 |
B | 0.00068973 | 0.00150109 | 0.00306787 | 0.0037015 | 0.00288733 | 0.00062438 | 0.01441587 | 0.00175146 | 13.3892811 | 2.29629633 | 3.59321811 | 1.04956324 | 3.38756321 | 0.98944353 | 16.8213335 | 4.91918301 |
C | 0.00182337 | 0.00503892 | 0.00807697 | 0.00628436 | 0.00729532 | 0.00634226 | 0.02249318 | 0.0100416 | 45.2693313 | 8.99897452 | 12.1239614 | 3.77223369 | 10.8517522 | 3.36864663 | 31.9982855 | 9.74059672 |
D | 0.00103901 | 0.00228084 | 0.00437608 | 0.00080403 | 0.00404258 | 0.00098854 | 0.01435914 | 0.00211298 | 19.5256697 | 3.39723828 | 4.94245166 | 1.44889791 | 4.59097219 | 1.34596044 | 16.6959336 | 4.87815493 |
E | 0.00082695 | 0.00167953 | 0.00421429 | 0.00068222 | 0.00400594 | 0.00090984 | 0.01223286 | 0.00216942 | 16.0484505 | 2.76278471 | 4.94652829 | 1.4439207 | 4.70010431 | 1.37218657 | 14.3399619 | 4.1861481 |
F | 0.00083281 | 0.00172759 | 0.00413688 | 0.00075105 | 0.0038354 | 0.00094666 | 0.01479934 | 0.00293383 | 15.8376234 | 2.74964356 | 4.7714866 | 1.3976735 | 4.42655776 | 1.29581397 | 16.9997911 | 4.98414625 |
G | 0.00062777 | 0.00133961 | 0.00292148 | 0.00038463 | 0.00270451 | 0.00067159 | 0.0102172 | 0.00150291 | 12.1361434 | 2.0832663 | 3.42516114 | 1.00071198 | 3.17680098 | 0.92726679 | 11.9159923 | 3.48494303 |
H | 0.00084291 | 0.00175864 | 0.00398322 | 0.00065638 | 0.0037566 | 0.00093803 | 0.03768491 | 0.00818776 | 15.8986914 | 2.81638821 | 4.5458395 | 1.34199731 | 4.29495389 | 1.26743003 | 42.2879135 | 12.595224 |
I | 0.00069517 | 0.0015282 | 0.00299673 | 0.0003936 | 0.00285997 | 0.00066557 | 0.00345098 | 0.01023957 | 13.4663605 | 2.32710305 | 3.51854302 | 1.02719857 | 3.35297541 | 0.97965636 | 4.29145549 | 1.29811287 |
J | 0.00062976 | 0.00137508 | 0.00428461 | 0.00027188 | 0.00246943 | 0.00060632 | 0.00275394 | 0.00906872 | 12.3392324 | 2.12166155 | 5.039479 | 1.47022453 | 2.91945068 | 0.85082711 | 3.35472003 | 1.00963885 |
K | 0.00084153 | 0.00173514 | 0.00417708 | 0.00059019 | 0.00397734 | 0.00091936 | 0.01973523 | 0.01713999 | 16.462836 | 2.81694585 | 4.89897847 | 1.430121 | 4.67706547 | 1.36512005 | 23.4278429 | 6.84671918 |
L | 0.00091354 | 0.00194007 | 0.00449805 | 0.00163909 | 0.00421455 | 0.00178876 | 0.0420623 | 0.01316229 | 17.743488 | 3.08314193 | 5.29275112 | 1.55927849 | 4.97026951 | 1.46232287 | 5.16441015 | 1.56004368 |
M | 0.0006116 | 0.00129119 | 0.00286777 | 0.00039014 | 0.00265452 | 0.00068521 | 0.0030545 | 0.03559015 | 11.8833887 | 2.0393166 | 3.36354507 | 0.98195641 | 3.11514971 | 0.90982144 | 4.20128196 | 1.7395392 |
N | 0.0008502 | 0.00498445 | 0.00405446 | 0.0007176 | 0.00375849 | 0.00097299 | 0.04150535 | 0.01602984 | 16.6332854 | 2.85486699 | 4.75020676 | 1.39576506 | 4.41236681 | 1.2946882 | 49.1934053 | 14.4530511 |
Appendix B. Comparison between Different CNN Architectures
Patch | WSI | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Read | Score | Stain Normalization | Prediction | Read | Score | Stain Normalization | Prediction | |||||||||
Architecture | Avg | Std | Avg | Std | Avg | Std | Avg | Std | Avg | Std | Avg | Std | Avg | Std | Avg | Std |
PROMETEO | 0.000612 | 0.001291 | 0.002868 | 0.00039 | 0.002655 | 0.000685 | 0.003054 | 0.004845 | 11.88339 | 2.039317 | 3.363545 | 0.981956 | 3.11515 | 0.909821 | 4.201282 | 1.739539 |
ResNet34 | 0.000612 | 0.001279 | 0.002844 | 0.000405 | 0.002676 | 0.000686 | 0.008982 | 0.010086 | 11.92095 | 2.045551 | 3.333316 | 0.973793 | 3.148634 | 0.918751 | 10.71205 | 3.134596 |
InceptionV3 | 0.000621 | 0.001317 | 0.002915 | 0.00041 | 0.002691 | 0.001136 | 0.039772 | 0.013828 | 12.10135 | 2.076446 | 3.415152 | 0.997178 | 3.168544 | 0.925316 | 46.72138 | 13.64997 |
VGG16 | 0.000635 | 0.001341 | 0.002931 | 0.000427 | 0.002785 | 0.000691 | 0.028664 | 0.009241 | 12.37371 | 2.140448 | 3.45475 | 1.007557 | 3.280768 | 0.957531 | 34.92197 | 10.16074 |
VGG19 | 0.000628 | 0.001313 | 0.002931 | 0.000425 | 0.00278 | 0.000682 | 0.029931 | 0.009305 | 12.34846 | 2.116793 | 3.44631 | 1.005834 | 3.266729 | 0.953449 | 36.25006 | 10.5361 |
MobileNet | 0.000612 | 0.001278 | 0.00285 | 0.00042 | 0.002688 | 0.001111 | 0.025689 | 0.010986 | 11.96025 | 2.044115 | 3.383497 | 0.986745 | 3.208441 | 0.936362 | 31.11017 | 9.030854 |
DenseNet121 | 0.000611 | 0.001284 | 0.002879 | 0.000389 | 0.002687 | 0.000683 | 0.042489 | 0.01686 | 11.82392 | 2.035413 | 3.373127 | 0.985149 | 3.148681 | 0.919557 | 51.48291 | 14.94588 |
Xception | 0.0006 | 0.001261 | 0.00288 | 0.000374 | 0.002758 | 0.000655 | 0.03405 | 0.011789 | 11.68313 | 1.987459 | 3.375536 | 0.986863 | 3.235289 | 0.945187 | 41.76486 | 12.17527 |
ResNet101 | 0.000607 | 0.001265 | 0.002839 | 0.000398 | 0.002701 | 0.00067 | 0.043287 | 0.014679 | 11.84637 | 2.035472 | 3.327598 | 0.971357 | 3.171104 | 0.925785 | 52.51713 | 15.26661 |
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawla, P. Epidemiology of prostate cancer. World J. Oncol. 2019, 10, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borley, N.; Feneley, M.R. Prostate cancer: Diagnosis and staging. Asian J. Androl. 2009, 11, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamet, P.; Tremblay, J. Artificial intelligence in medicine. Metabolism 2017, 69, S36–S40. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, A.S. The impact of artificial intelligence in medicine on the future role of the physician. PeerJ 2019, 7, e7702. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.; Wu, G.; Suk, H.I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, J.; Zheng, X.; Li, Y.; Zhang, Q.; Ying, S. Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer’s disease. IEEE J. Biomed. Health Inform. 2017, 22, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Dou, Q.; Chen, H.; Yu, L.; Zhao, L.; Qin, J.; Wang, D.; Mok, V.C.; Shi, L.; Heng, P.A. Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans. Med. Imaging 2016, 35, 1182–1195. [Google Scholar] [CrossRef] [PubMed]
- Duran-Lopez, L.; Dominguez-Morales, J.P.; Corral-Jaime, J.; Vicente-Diaz, S.; Linares-Barranco, A. COVID-XNet: A custom deep learning system to diagnose and locate COVID-19 in chest X-ray images. Appl. Sci. 2020, 10, 5683. [Google Scholar] [CrossRef]
- Bahrami, K.; Shi, F.; Rekik, I.; Shen, D. Convolutional neural network for reconstruction of 7T-like images from 3T MRI using appearance and anatomical features. In Deep Learning and Data Labeling for Medical Applications; Springer: Berlin/Heidelberg, Germany, 2016; pp. 39–47. [Google Scholar]
- Ström, P.; Kartasalo, K.; Olsson, H.; Solorzano, L.; Delahunt, B.; Berney, D.M.; Bostwick, D.G.; Evans, A.J.; Grignon, D.J.; Humphrey, P.A.; et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: A population-based, diagnostic study. Lancet Oncol. 2020, 21, 222–232. [Google Scholar] [CrossRef]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Campanella, G.; Hanna, M.G.; Geneslaw, L.; Miraflor, A.; Silva, V.W.K.; Busam, K.J.; Brogi, E.; Reuter, V.E.; Klimstra, D.S.; Fuchs, T.J. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 2019, 25, 1301–1309. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Duran-Lopez, L.; Dominguez-Morales, J.P.; Conde-Martin, A.F.; Vicente-Diaz, S.; Linares-Barranco, A. PROMETEO: A CNN-Based Computer-Aided Diagnosis System for WSI Prostate Cancer Detection. IEEE Access 2020, 8, 128613–128628. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Reinhard, E.; Adhikhmin, M.; Gooch, B.; Shirley, P. Color transfer between images. IEEE Comput. Graph. Appl. 2001, 21, 34–41. [Google Scholar] [CrossRef]
- Magee, D.; Treanor, D.; Crellin, D.; Shires, M.; Smith, K.; Mohee, K.; Quirke, P. Colour normalisation in digital histopathology images. In Proceedings of the Optical Tissue Image analysis in Microscopy, Histopathology and Endoscopy (MICCAI Workshop), London, UK, 24 September 2009; pp. 100–111. [Google Scholar]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A comprehensive survey on transfer learning. arXiv 2019, arXiv:1911.02685. [Google Scholar] [CrossRef]
- Zhang, Q.; Bai, C.; Chen, Z.; Li, P.; Yu, H.; Wang, S.; Gao, H. Deep learning models for diagnosing spleen and stomach diseases in smart Chinese medicine with cloud computing. Concurr. Comput. Pract. Exp. 2019, e5252. [Google Scholar] [CrossRef]
Hospital | No. of WSIs | ||
---|---|---|---|
Normal | Malignant | Total | |
Virgen de Valme Hospital | 27 | 70 | 97 |
Clínic Hospital | 100 | 129 | 229 |
Puerta del Mar Hospital | 79 | 65 | 144 |
Model | Avg. Prediction Time (patch) | Avg. Prediction Time (WSI) | Slowdown * | Trainable Parameters |
---|---|---|---|---|
PROMETEO | 3.054 ± 4.845 ms | 4.201 ± 1.739 s | 1× | 1,107,010 |
ResNet34 | 8.982 ± 10.086 ms | 10.712 ± 3.134 s | 2.55× | 21,800,107 |
InceptionV3 | 41.301 ± 44.282 ms | 49.076 ± 14.353 s | 11.68× | 23,851,784 |
VGG16 | 28.664 ± 9.241 ms | 34.921 ± 10.160 s | 8.31× | 138,357,544 |
VGG19 | 29.931 ± 9.305 ms | 36.250 ± 10.536 s | 8.63× | 143,667,240 |
MobileNet | 25.689 ± 10.986 ms | 31.110 ± 9.030 s | 7.41× | 4,253,864 |
DenseNet121 | 42.489 ± 16.859 ms | 51.483 ± 14.945 s | 12.25× | 8,062,504 |
Xception | 34.050 ± 11.789 ms | 41.764 ± 12.175 s | 9.94× | 22,910,480 |
ResNet101 | 43.287 ± 14.679 ms | 52.517 ± 15.266 s | 12.50× | 44,707,176 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duran-Lopez, L.; Dominguez-Morales, J.P.; Rios-Navarro, A.; Gutierrez-Galan, D.; Jimenez-Fernandez, A.; Vicente-Diaz, S.; Linares-Barranco, A. Performance Evaluation of Deep Learning-Based Prostate Cancer Screening Methods in Histopathological Images: Measuring the Impact of the Model’s Complexity on Its Processing Speed. Sensors 2021, 21, 1122. https://doi.org/10.3390/s21041122
Duran-Lopez L, Dominguez-Morales JP, Rios-Navarro A, Gutierrez-Galan D, Jimenez-Fernandez A, Vicente-Diaz S, Linares-Barranco A. Performance Evaluation of Deep Learning-Based Prostate Cancer Screening Methods in Histopathological Images: Measuring the Impact of the Model’s Complexity on Its Processing Speed. Sensors. 2021; 21(4):1122. https://doi.org/10.3390/s21041122
Chicago/Turabian StyleDuran-Lopez, Lourdes, Juan P. Dominguez-Morales, Antonio Rios-Navarro, Daniel Gutierrez-Galan, Angel Jimenez-Fernandez, Saturnino Vicente-Diaz, and Alejandro Linares-Barranco. 2021. "Performance Evaluation of Deep Learning-Based Prostate Cancer Screening Methods in Histopathological Images: Measuring the Impact of the Model’s Complexity on Its Processing Speed" Sensors 21, no. 4: 1122. https://doi.org/10.3390/s21041122