WildGait: Learning Gait Representations from Raw Surveillance Streams
Abstract
:Simple Summary
Abstract
1. Introduction
- 1.
- We are among the first to explore self-supervised learning on gait recognition, and we propose WildGait, a data collection and pretraining pipeline, which enables learning meaningful gait representations in a self-supervised manner, from automatically extracted skeleton sequences in unconstrained environments.
- 2.
- The Unconstrained Wild Gait dataset (UWG), the largest dataset to date of noisily tracked skeleton sequences to enable the gait recognition research community to further explore ways to pretrain gait recognition systems in an self-supervised manner.
- 3.
- A study on transfer learning capabilities of our pretrained network on popular gait recognition databases, highlighting great performance in scenarios with low amounts of training data, and state-of-the-art accuracy on skeleton-based gait recognition when utilizing all available training data.
2. Related Work
2.1. Appearance-Based Methods
2.2. Model-Based Approaches
2.3. Gait Recognition Datasets
2.4. Unsupervised Skeleton-Based Methods
3. Method
3.1. Dataset Construction
3.2. Learning Procedure
4. Experiments & Results
4.1. Benchmark Datasets
4.2. Evaluation Procedure
4.3. Quantitative Evaluation
4.3.1. Direct Transfer Performance
4.3.2. Supervised Fine-Tuning
4.3.3. Comparison with Unsupervised Skeleton-Based Methods
4.3.4. Comparison with State-of-the-Art
4.4. Qualitative Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Islam, T.U.; Awasthi, L.K.; Garg, U. Gender and Age Estimation from Gait: A Review. In Proceedings of the International Conference on Innovative Computing and Communications, New Delhi, India, 21–23 February 2020; Gupta, D., Khanna, A., Bhattacharyya, S., Hassanien, A.E., Anand, S., Jaiswal, A., Eds.; Springer: Singapore, 2021; pp. 947–962. [Google Scholar]
- Randhavane, T.; Bhattacharya, U.; Kapsaskis, K.; Gray, K.; Bera, A.; Manocha, D. Identifying Emotions from Walking using Affective and Deep Features. arXiv 2020, arXiv:1906.11884. [Google Scholar]
- Ancillao, A. Modern Functional Evaluation Methods for Muscle Strength and Gait Analysis; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- An, W.; Yu, S.; Makihara, Y.; Wu, X.; Xu, C.; Yu, Y.; Liao, R.; Yagi, Y. Performance Evaluation of Model-based Gait on Multi-view Very Large Population Database with Pose Sequences. IEEE Trans. Biom. Behav. Identity Sci. 2020, 2, 421–430. [Google Scholar] [CrossRef]
- Shiqi, Y.; Tan, D.; Tan, T. A Framework for Evaluating the Effect of View Angle, Clothing and Carrying Condition on Gait Recognition. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006; Volume 4, pp. 441–444. [Google Scholar] [CrossRef]
- Hofmann, M.; Geiger, J.; Bachmann, S.; Schuller, B.; Rigoll, G. The TUM Gait from Audio, Image and Depth (GAID) database: Multimodal recognition of subjects and traits. J. Vis. Commun. Image Represent. 2014, 25, 195–206. [Google Scholar] [CrossRef]
- Zhang, Z.; Tran, L.; Yin, X.; Atoum, Y.; Wan, J.; Wang, N.; Liu, X. Gait Recognition via Disentangled Representation Learning. In Proceeding of IEEE Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Li, J.; Wang, C.; Zhu, H.; Mao, Y.; Fang, H.S.; Lu, C. CrowdPose: Efficient Crowded Scenes Pose Estimation and A New Benchmark. arXiv 2018, arXiv:1812.00324. [Google Scholar]
- Cao, Z.; Hidalgo Martinez, G.; Simon, T.; Wei, S.; Sheikh, Y.A. OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Rogez, G.; Weinzaepfel, P.; Schmid, C. LCR-Net++: Multi-Person 2D and 3D Pose Detection in Natural Images. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 1146–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doersch, C.; Zisserman, A. Multi-task Self-Supervised Visual Learning. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2070–2079. [Google Scholar] [CrossRef] [Green Version]
- Gidaris, S.; Singh, P.; Komodakis, N. Unsupervised representation learning by predicting image rotations. arXiv 2018, arXiv:1803.07728. [Google Scholar]
- Noroozi, M.; Favaro, P. Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles. In Proceedings of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 69–84. [Google Scholar]
- Caron, M.; Bojanowski, P.; Joulin, A.; Douze, M. Deep clustering for unsupervised learning of visual features. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 132–149. [Google Scholar]
- Caron, M.; Misra, I.; Mairal, J.; Goyal, P.; Bojanowski, P.; Joulin, A. Unsupervised learning of visual features by contrasting cluster assignments. arXiv 2020, arXiv:2006.09882. [Google Scholar]
- Radford, A.; Kim, J.W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; et al. Learning transferable visual models from natural language supervision. arXiv 2021, arXiv:2103.00020. [Google Scholar]
- Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. Supervised Contrastive Learning. arXiv 2020, arXiv:2004.11362. [Google Scholar]
- Han, J.; Bhanu, B. Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 316–322. [Google Scholar] [CrossRef]
- Choi, S.; Kim, J.; Kim, W.; Kim, C. Skeleton-Based Gait Recognition via Robust Frame-Level Matching. IEEE Trans. Inf. Forensics Secur. 2019, 14, 2577–2592. [Google Scholar] [CrossRef]
- Sprager, S.; Juric, M. Inertial Sensor-Based Gait Recognition: A Review. Sensors 2015, 15, 22089–22127. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, X.; Yang, S.; Shi, Z.; Chi, C. Gait-Based Implicit Authentication Using Edge Computing and Deep Learning for Mobile Devices. Sensors 2021, 21, 4592. [Google Scholar] [CrossRef] [PubMed]
- Bashir, K.; Xiang, T.; Gong, S. Gait recognition using gait entropy image. In Proceedings of the 3rd International Conference on Imaging for Crime Detection and Prevention (ICDP 2009), London, UK, 3 December 2009. [Google Scholar]
- Lam, T.H.; Cheung, K.H.; Liu, J.N. Gait flow image: A silhouette-based gait representation for human identification. Pattern Recognit. 2011, 44, 973–987. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, J.; Pu, J.; Yuan, X.; Wang, L. Chrono-Gait Image: A Novel Temporal Template for Gait Recognition. In Proceedings of the Computer Vision—ECCV 2010, Crete, Greece, 5–11 September 2010; Daniilidis, K., Maragos, P., Paragios, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 257–270. [Google Scholar]
- Chen, Y.; Tian, Y.; He, M. Monocular human pose estimation: A survey of deep learning-based methods. Comput. Vis. Image Underst. 2020, 192, 102897. [Google Scholar] [CrossRef]
- Feng, Y.; Li, Y.; Luo, J. Learning effective Gait features using LSTM. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancún, Mexico, 4–8 December 2016; pp. 325–330. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Liao, R.; Cao, C.; Garcia, E.B.; Yu, S.; Huang, Y. Pose-based temporal-spatial network (PTSN) for gait recognition with carrying and clothing variations. In Proceedings of the Chinese Conference on Biometric Recognition, Shenzhen, China, 28–29 October 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 474–483. [Google Scholar]
- Sheng, W.; Li, X. Siamese denoising autoencoders for joints trajectories reconstruction and robust gait recognition. Neurocomputing 2020, 395, 86–94. [Google Scholar] [CrossRef]
- Lima, V.C.d.; Melo, V.H.C.; Schwartz, W.R. Simple and efficient pose-based gait recognition method for challenging environments. Pattern Anal. Appl. 2020, 24, 497–507. [Google Scholar] [CrossRef]
- Liao, R.; Yu, S.; An, W.; Huang, Y. A model-based gait recognition method with body pose and human prior knowledge. Pattern Recognit. 2020, 98, 107069. [Google Scholar] [CrossRef]
- An, W.; Liao, R.; Yu, S.; Huang, Y.; Yuen, P.C. Improving Gait Recognition with 3D Pose Estimation. In Biometric Recognition; Zhou, J., Wang, Y., Sun, Z., Jia, Z., Feng, J., Shan, S., Ubul, K., Guo, Z., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 137–147. [Google Scholar]
- Li, N.; Zhao, X.; Ma, C. JointsGait:A model-based Gait Recognition Method based on Gait Graph Convolutional Networks and Joints Relationship Pyramid Mapping. arXiv 2020, arXiv:2005.08625. [Google Scholar]
- Chen, X.; Weng, J.; Lu, W.; Xu, J. Multi-Gait Recognition Based on Attribute Discovery. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 1697–1710. [Google Scholar] [CrossRef]
- Makihara, Y.; Matovski, D.; Carter, J.; Yagi, Y. Gait Recognition: Databases, Representations, and Applications. In Computer Vision; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef] [Green Version]
- Su, K.; Liu, X.; Shlizerman, E. Predict & cluster: Unsupervised skeleton based action recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; Seattle, WA, USA, 14–19 June 2020, pp. 9631–9640.
- Li, J.; Shlizerman, E. Iterate & Cluster: Iterative Semi-Supervised Action Recognition. arXiv 2020, arXiv:2006.06911. [Google Scholar]
- Lin, L.; Song, S.; Yang, W.; Liu, J. MS2L: Multi-Task Self-Supervised Learning for Skeleton Based Action Recognition. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020. [Google Scholar]
- Yang, Z.; Li, Y.; Yang, J.; Luo, J. Action Recognition with Spatio-Temporal Visual Attention on Skeleton Image Sequences. arXiv 2018, arXiv:cs.CV/1801.10304. [Google Scholar] [CrossRef] [Green Version]
- Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple online and realtime tracking. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016. [Google Scholar] [CrossRef] [Green Version]
- Hendrycks, D.; Mazeika, M.; Dietterich, T. Deep Anomaly Detection with Outlier Exposure. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Al-Obaidi, S.; Wall, J.C.; Al-Yaqoub, A.; Al-Ghanim, M. Basic gait parameters: A comparison of reference data for normal subjects 20 to 29 years of age from Kuwait and Scandinavia. J. Rehabil. Res. Dev. 2003, 40, 361. [Google Scholar] [CrossRef] [PubMed]
- Wojke, N.; Bewley, A.; Paulus, D. Simple Online and Realtime Tracking with a Deep Association Metric. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3645–3649. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Proceedings of the Computer Vision—ECCV 2014, Zurich, Switzerland, 6–12 September 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 740–755. [Google Scholar]
- Murray, M.P.; Drought, A.B.; Kory, R.C. Walking Patterns of Normal Men. JBJS 1964, 46, 335–360. [Google Scholar] [CrossRef]
- Yan, S.; Xiong, Y.; Lin, D. Spatial temporal graph convolutional networks for skeleton-based action recognition. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Wang, J.; Jiao, J.; Liu, Y.H. Self-supervised video representation learning by pace prediction. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 504–521. [Google Scholar]
- Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 815–823. [Google Scholar]
- Wen, Y.; Zhang, K.; Li, Z.; Qiao, Y. A Discriminative Feature Learning Approach for Deep Face Recognition. In Proceedings of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 499–515. [Google Scholar]
- Luo, H.; Gu, Y.; Liao, X.; Lai, S.; Jiang, W. Bag of tricks and a strong baseline for deep person re-identification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019. [Google Scholar]
- Xuan, H.; Stylianou, A.; Liu, X.; Pless, R. Hard negative examples are hard, but useful. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 126–142. [Google Scholar]
- Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual representations. In Proceedings of the International Conference on Machine Learning, PMLR, Montréal, QC, Canada, 6–8 July 2020; pp. 1597–1607. [Google Scholar]
- Tian, Y.; Krishnan, D.; Isola, P. Contrastive multiview coding. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Proceedings, Part XI 16. Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 776–794. [Google Scholar]
- Weinberger, K.Q.; Saul, L.K. Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 2009, 10, 207–244. [Google Scholar]
- Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Desjardins, G.; Rusu, A.A.; Milan, K.; Quan, J.; Ramalho, T.; Grabska-Barwinska, A. Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. USA 2017, 114, 3521–3526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zisserman, A.; Carreira, J.; Simonyan, K.; Kay, W.; Zhang, B.; Hillier, C.; Vijayanarasimhan, S.; Viola, F.; Green, T.; Back, T.; et al. The kinetics human action video datasets. arXiv 2017, arXiv:1705.06950. [Google Scholar]
- van der Maaten, L.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Liu, X.; Zhao, H.; Tian, M.; Sheng, L.; Shao, J.; Yi, S.; Yan, J.; Wang, X. Hydraplus-net: Attentive deep features for pedestrian analysis. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 350–359. [Google Scholar]
Continent | # IDs * | Walk Length (hr) | Avg. Run Len. (Frames) |
---|---|---|---|
Asia | 3635 | 4.79 | 104.5 |
Europe | 12,993 | 19.76 | 110.1 |
North America | 21,874 | 34.47 | 108.2 |
Dataset | # IDs | Views | Total Walk Length (hr) | Avg. Run Length (frames) | Runs/ID |
---|---|---|---|---|---|
CASIA-B | 124 | 11 | 15.8 | 100 | 110 |
FVG | 226 | 3 | 3.2 | 97 | 12 |
UWG (ours) | 38,502 * | 1 | 59.0 | 108.5 | 1 |
CASIA-B—Direct Transfer | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 18 | 36 | 54 | 72 | 90 | 108 | 126 | 144 | 162 | 180 | Mean | ||
NM | Pretrained Kinetics | 19.35 | 19.35 | 27.42 | 29.03 | 25.81 | 38.71 | 27.42 | 27.42 | 20.97 | 12.9 | 6.45 | 23.17 |
Predict & Cluster | 41.93 | 45.16 | 45.96 | 34.67 | 20.16 | 11.29 | 30.64 | 32.25 | 21.77 | 19.35 | 12.09 | 28.66 | |
MSL | 37.90 | 39.51 | 40.32 | 51.61 | 24.19 | 17.74 | 25.80 | 46.74 | 40.32 | 33.06 | 34.67 | 35.62 | |
Pace Prediction | 43.34 | 39.51 | 50.00 | 54.03 | 38.70 | 62.90 | 70.96 | 70.16 | 54.03 | 66.93 | 64.51 | 55.91 | |
WildGait (ours) | 72.58 | 84.67 | 90.32 | 83.87 | 63.70 | 62.90 | 66.12 | 83.06 | 86.29 | 84.67 | 83.06 | 78.29 | |
CL | Pretrained Kinetics | 9.68 | 8.87 | 16.94 | 19.35 | 6.45 | 12.1 | 16.13 | 15.32 | 7.26 | 4.03 | 4.84 | 11.0 |
Predict & Cluster | 15.32 | 19.35 | 25.81 | 16.13 | 6.45 | 4.03 | 17.74 | 17.74 | 8.06 | 8.06 | 7.26 | 13.27 | |
MSL | 10.48 | 17.74 | 13.71 | 12.1 | 6.45 | 12.9 | 13.71 | 18.55 | 13.71 | 8.06 | 9.68 | 12.46 | |
Pace Prediction | 13.71 | 10.48 | 8.87 | 8.06 | 11.29 | 13.71 | 16.94 | 17.74 | 12.9 | 13.71 | 15.32 | 12.98 | |
WildGait (ours) | 12.1 | 33.06 | 25.81 | 18.55 | 12.9 | 11.29 | 21.77 | 24.19 | 20.16 | 26.61 | 16.13 | 20.23 | |
CB | Pretrained Kinetics | 17.74 | 15.32 | 12.9 | 14.52 | 18.55 | 12.9 | 15.32 | 17.74 | 14.52 | 8.87 | 8.06 | 14.22 |
Predict & Cluster | 24.19 | 34.68 | 27.42 | 26.61 | 10.48 | 9.68 | 17.74 | 20.97 | 11.29 | 15.32 | 12.1 | 19.13 | |
MSL | 25.0 | 33.87 | 31.45 | 26.61 | 11.29 | 16.13 | 20.97 | 27.42 | 25.81 | 20.97 | 20.16 | 23.61 | |
Pace Prediction | 37.1 | 29.03 | 37.1 | 31.45 | 31.45 | 43.55 | 42.74 | 34.68 | 31.45 | 33.06 | 34.68 | 35.12 | |
WildGait (ours) | 67.74 | 60.48 | 63.71 | 51.61 | 47.58 | 39.52 | 41.13 | 50.0 | 52.42 | 51.61 | 42.74 | 51.69 |
FVG | |||||
---|---|---|---|---|---|
WS | CB | CL | CBG | ALL | |
Pretrained Kinetics | 24.00 | 54.55 | 28.63 | 43.16 | 22.33 |
Predict & Cluster | 32.79 | 33.72 | 20.08 | 44.01 | 32.40 |
MSL | 42.33 | 40.78 | 31.62 | 53.84 | 41.93 |
Pace Prediction | 45.65 | 40.78 | 28.63 | 55.55 | 44.84 |
WildGait (ours) | 75.66 | 81.81 | 48.71 | 84.61 | 75.66 |
Probe | Method | 0 | 18 | 36 | 54 | 72 | 90 | 108 | 126 | 144 | 162 | 180 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NM | PTSN [28] | 34.5 | 45.6 | 49.6 | 51.3 | 52.7 | 52.3 | 53 | 50.8 | 52.2 | 48.3 | 31.4 | 47.4 |
PTSN-3D [32] | 38.7 | 50.2 | 55.9 | 56 | 56.7 | 54.6 | 54.8 | 56 | 54.1 | 52.4 | 40.2 | 51.9 | |
PoseGait [31] | 48.5 | 62.7 | 66.6 | 66.2 | 61.9 | 59.8 | 63.6 | 65.7 | 66 | 58 | 46.5 | 60.5 | |
PoseFrame [30] | 66.9 | 90.3 | 91.1 | 55.6 | 89.5 | 97.6 | 98.4 | 97.6 | 89.5 | 69.4 | 68.5 | 83.1 | |
WildGait network (ours) | 86.3 | 96.0 | 97.6 | 94.3 | 92.7 | 94.3 | 94.3 | 98.4 | 97.6 | 91.1 | 83.8 | 93.4 | |
CL | PTSN [28] | 14.2 | 17.1 | 17.6 | 19.3 | 19.5 | 20 | 20.1 | 17.3 | 16.5 | 18.1 | 14 | 17.6 |
PTSN-3D [32] | 15.8 | 17.2 | 19.9 | 20 | 22.3 | 24.3 | 28.1 | 23.8 | 20.9 | 23 | 17 | 21.1 | |
PoseGait [31] | 21.3 | 28.2 | 34.7 | 33.8 | 33.8 | 34.9 | 31 | 31 | 32.7 | 26.3 | 19.7 | 29.8 | |
PoseFrame [30] | 13.7 | 29.0 | 20.2 | 19.4 | 28.2 | 53.2 | 57.3 | 52.4 | 25.8 | 26.6 | 21.0 | 31.5 | |
WildGait network (ours) | 29.0 | 32.2 | 35.5 | 40.3 | 26.6 | 25.0 | 38.7 | 38.7 | 31.4 | 34.6 | 31.4 | 33.0 | |
BG | PTSN [28] | 22.4 | 29.8 | 29.6 | 29.2 | 32.5 | 31.5 | 32.1 | 31 | 27.3 | 28.1 | 18.2 | 28.3 |
PTSN-3D [32] | 27.7 | 32.7 | 37.4 | 35 | 37.1 | 37.5 | 37.7 | 36.9 | 33.8 | 31.8 | 27 | 34.1 | |
PoseGait [31] | 29.1 | 39.8 | 46.5 | 46.8 | 42.7 | 42.2 | 42.7 | 42.2 | 42.3 | 35.2 | 26.7 | 39.6 | |
PoseFrame [30] | 45.2 | 66.1 | 60.5 | 42.7 | 58.1 | 84.7 | 79.8 | 82.3 | 65.3 | 54.0 | 50.0 | 62.6 | |
WildGait network (ours) | 66.1 | 70.1 | 72.6 | 65.3 | 56.4 | 64.5 | 65.3 | 67.7 | 57.2 | 66.1 | 52.4 | 64.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cosma, A.; Radoi, I.E. WildGait: Learning Gait Representations from Raw Surveillance Streams. Sensors 2021, 21, 8387. https://doi.org/10.3390/s21248387
Cosma A, Radoi IE. WildGait: Learning Gait Representations from Raw Surveillance Streams. Sensors. 2021; 21(24):8387. https://doi.org/10.3390/s21248387
Chicago/Turabian StyleCosma, Adrian, and Ion Emilian Radoi. 2021. "WildGait: Learning Gait Representations from Raw Surveillance Streams" Sensors 21, no. 24: 8387. https://doi.org/10.3390/s21248387
APA StyleCosma, A., & Radoi, I. E. (2021). WildGait: Learning Gait Representations from Raw Surveillance Streams. Sensors, 21(24), 8387. https://doi.org/10.3390/s21248387