Research and Analysis of the Propagation of Vertical Vibrations in the Arrangement of a Vehicle Seat—A Child’s Seat
Abstract
:1. Introduction
- ISOFIX—mounting system,
- a stabilizing leg,
- top fastening belt,
- side protection system,
- five-point seat belts.
- group 0 (0+)—child seats for children mass to 10 kg (13 kg),
- group I—child seats for children mass from 9 kg to 18 kg,
- group II—child seats for children mass from 15 kg to 25 kg,
- group III—child seats for children mass from 22 kg to 36 kg.
2. Research Methodology
3. Research Object
4. Research Apparatus
5. Road Test Results and Their Analysis
- Root mean square (rms)
- Vibration Dose Value (VDV)
- Root mean quad (rmq)
- a (t)—vertical acceleration value, m/s2, recorded as a function of time t
- T—segment of the measurement duration, s.
6. Analysis of the Results
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brown, S.H.M.; Grondin, D.E.; Potvin, J.R. Strength Limitations to Proper Child Safety Seat Installation: Implications for Child Safety. Appl. Ergon. 2009, 40, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Uddin, A.; Kulanthayan, K.C.M.; Tanveer, K.A. Child Restraint System: Lessons Learned from Global Best Practices. Int. J. Acad. Res. Bus. Soc. Sci. 2021, 11, 904–921. [Google Scholar] [CrossRef]
- Wen, Y.; Yang, W. Application of Ergonomics Form in Car Seat Modeling Design. In Proceedings of the 2nd International Conference on Artificial Intelligence and Advanced Manufacture (AIAM2020), Manchester, UK, 15–17 October 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 326–329. [Google Scholar] [CrossRef]
- Seat Car History. Available online: https://8stars.com/pl/module/smartblog/details?id_post=5 (accessed on 14 October 2021).
- Brown, J.; Finch, C.F.; Hatfield, J.; Bilston, L.E. Child Restraint Fitting Stations reduce incorrect restraint use among child occupants. Accid. Anal. Prev. 2011, 43, 1128–1133. [Google Scholar] [CrossRef]
- Frej, D.; Grabski, P.; Szumska, E. Analysis of the Causes of Vehicle Accidents in Poland in 2009–2019. LOGI—Sci. J. Transp. Logist. 2020, 11, 76–87. [Google Scholar] [CrossRef]
- Moravčík, E.; Jaśkiewicz, M. Boosting car safety in the EU. In Proceedings of the 2018 XI International Science-Technical Conference Automotive Safety, Žastá, Slovakia, 18–20 April 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Jurecki, R.; Jaśkiewicz, M. Analysis of Road accidents over the last ten years. Zesz. Nauk. Akad. Mor. W Szczec. 2012, 32, 65–70. [Google Scholar]
- Berger, M.; Dandekar, A.; Bernhaupt, R.; Pfleging, B. An AR-Enabled Interactive Car Door to Extend In-Car Infotainment Systems for Rear Seat Passengers. In Proceedings of the Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021; Association for Computing Machinery: New York, NY, USA, 2021; Volume 404, pp. 1–6. [Google Scholar] [CrossRef]
- Greenspa, A.; Dellinger, A.; Chen, J. Restraint use and seating position among children less than 13 years of age: Is it still a problem? J. Saf. Res. 2010, 41, 83–185. [Google Scholar]
- Lee, S.K.; White, P.R. Application of wavelet analysis to the impact harshness of a vehicle. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2000, 214, 1331–1338. [Google Scholar] [CrossRef]
- Lesire, P.; Johannsen, H.; Willinger, R.; Longto, A. CASPER—Improvement of child safety in cars. Procedia Soc. Behav. Sci. 2012, 48, 2654–2663. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.; Pope, C.N.; Nwosu, A.; McKenzie, L.B.; Zhu, M. Child passenger fatality: Child restraint system usage and contributing factors among the youngest passengers from 2011 to 2015. J. Saf. Res. 2019, 70, 33–38. [Google Scholar] [CrossRef]
- Stokłosa, J.; Jaśkiewicz, M. Simulation study of longitudinal forces in the coupling device of heavy freight trains. Adv. Sci. Technol. Res. J. 2014, 8, 24–30. [Google Scholar] [CrossRef]
- Hayes, M. Child safety in cars. BMJ 2007, 333, 1183–1184. [Google Scholar] [CrossRef]
- Snowdon, A.W.; Polgar, J.; Linda, P.; Lynnette, S. Parents’ knowledge about and use of child safety systems. Can. J. Nurs. Res. 2006, 38, 98–114. [Google Scholar] [PubMed]
- Biagioli, F. Educating Oregon Families about Child Safety Seats. Calif. J. Health Promot. 2004, 2, 55–58. [Google Scholar] [CrossRef]
- Sergio, O.; Claudio, L.; Carvalho, M.; Rosangela, S.; Lüders, L.; Fernanda, O. Child safety seat usage errors in under-4s. J. De Pediatr. 2012, 88, 297–302. [Google Scholar] [CrossRef]
- Vicki, A.Z.; Santis, J.P. Booster Seat or Seat Belt? Motor Vehicle Injuries and Child Restraint Laws in Preschool and Early School-Age Children. J. Spec. Pediatric Nurs. 2005, 10, 183–190. [Google Scholar]
- Jadhav, T.A.; Thakare, G.S. Design and Analysis of Bus Passenger Seat as PerAIS-023. Int. J. Eng. Res. Technol. 2019, 8, 458–462. [Google Scholar]
- Baranowski, P.; Damaziak, K.; Malachowski, J.; Mazurkiewicz, L.; Muszyński, A. A Child Seat Numerical Model Validation in the Static and Dynamic Work Conditions. Arch. Civ. Mech. Eng. 2015, 15, 361–375. [Google Scholar] [CrossRef]
- The History of Children’s Car Seats. Available online: https://www.titlemax.com/articles/the-history-of-childrens-car-seats/ (accessed on 14 October 2021).
- Child Safety in Cars a Guide to Driving Safely with Children on Board. Available online: https://www.rsa.ie/Documents/Road%20Safety/Safety%20for%20kids/Child%20Safety%20in%20Cars%20English.pdf (accessed on 14 October 2021).
- Song, Y.J.; Jeon, E.S. Lightweight Design of Child Pop-up Seat Leg Part Based on Dynamic Environment. Int. J. Mech. Eng. Technol. 2019, 10, 527–537. [Google Scholar]
- Blair, J.; Perdios, A.; Babul, S.; Young, K.; Beckles, J.; Pike, I.; Cripton, P.; Sasges, D.; Mulpuri, K.; Desapriya, E. The appropriate and inappropriate use of child restraint seats in Manitoba. Int. J. Inj. Contr. Saf. Promot. 2008, 15, 151–156. [Google Scholar] [CrossRef]
- Seng, W.F.; Bin, L. Intelligent gestural control and ergonomic analysis in barrier-free car seat design. In Proceedings of the 3rd International Conference on Industrial and Business Engineering (ICIBE 2017), Sapporo, Japan, 17–19 August 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 34–39. [Google Scholar] [CrossRef]
- Triawan, F.; Prayogo, M.A.; Rochmad, C.O.; Simarmata, A. Structural Design and Strength Analysis of Motorcycle Child Seat. In Proceedings of the 2020 6th International Conference on Computing Engineering and Design (ICCED), Sukabumi, Indonesia, 15–16 October 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Posuniak, P.; Jaśkiewicz, M.; Kowalski, K.; Dąbrowski, F. Child restraint systems: Problems related to the safety of children transported in booster seats (without integral safety belts). In Proceedings of the 2018 XI International Science-Technical Conference Automotive Safety, Casta, Slovakia, 18–20 April 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Cicchino, J.B.; Jermakian, J.S. Vehicle characteristics associated with LATCH use and correct use in real-world child restraint installations. J. Saf. Res. 2015, 53, 77–85. [Google Scholar] [CrossRef]
- Frej, D.P.; Podosek, K.; To, K. Overview of design solutions for child seats. Arch. Automot. Eng. Arch. Motoryz. 2021, 92, 33–47. [Google Scholar]
- Togashi, N.; Shimono, T.; Nozaki, T.; Shibata, T.; Aoyama, Y.; Kitahashi, Y. Development of Three-Axis Seating Posture Holding Assist Chair and Proposed Variable Compliance Control. In Proceedings of the 2019 IEEE International Conference on Mechatronics (ICM), Ilmenau, Germany, 18–20 March 2019; pp. 455–460. [Google Scholar] [CrossRef]
- Więckowski, D. An attempt to estimate natural frequencies of parts of the child’s body (Próba oszacowania częstotliwości drgań własnych części ciała dziecka). Arch. Automot. Eng. Arch. Motoryz. 2012, 55, 61–74. [Google Scholar]
- Balci, B.; Alkan, B.; Elihos, A.; Artan, Y. Front Seat Child Occupancy Detection Using Road Surveillance Camera Images. In Proceedings of the 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 1927–1931. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, Y. Analysis on the design of child safety seats in vehicle. In Proceedings of the 2008 9th International Conference on Computer-Aided Industrial Design and Conceptual Design, Kunming, China, 22–25 November 2008; pp. 214–217. [Google Scholar] [CrossRef]
- Muszyński, A.; Trzaska, P.; Wicher, J. Analysis of the forces developing in the straps of the belts that restrain a child in a safety seat (Analiza sił działających w taśmach pasów podtrzymujących dziecko w foteliku bezpieczeństwa). Arch. Automot. Eng. Arch. Motoryz. 2015, 67, 113–126. [Google Scholar]
- Sen, G.; Sener-Pedgley, B. Design for Luxury Front-Seat Passenger Infotainment Systems with Experience Prototyping through VR. Int. J. Hum.-Comput. Interact. 2020, 36, 1714–1733. [Google Scholar] [CrossRef]
- Więckowski, D. Analysis domain of the time vertical vibration on account comfort child during ride in the vehicle (Analiza w dziedzinie czasu drgań pionowych ze względu na comfort podróżowania dziecka w samochodzie). Czas. Tech. Mech. 2012, 109, 73–91. [Google Scholar]
- Zuska, A.; Szumska, E.; Frej, D. Laboratory Tests of the Control of the Child Seats using Method for the Vibration Comfort of Children Transported in Them. Commun. Sci. Lett. Univ. Zilina 2021, 23, B187–B199. [Google Scholar] [CrossRef]
- Zuska, A.; Szumska, E.; Frej, D. Laboratory studies of the influence of the working position of the passenger vehicle air suspension on the vibration comfort of children transported in the child restraint system. Open Eng. 2021, 11, 470–482. [Google Scholar] [CrossRef]
- Dižo, J.; Blatnický, M.; Melnik, R. Assessment of the Passenger Ride Comfort for a Coach by Means of Simulation Computations. LOGI—Sci. J. Transp. Logist. 2017, 8, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Cvok, I.; Hrgetić, M.; Hoić, M.; Deur, J.; Ivanovic, V. Design of a linear motor-based shaker rig for testing driver’s perceived ride comfort. Mechatronics 2021, 75, 102521. [Google Scholar] [CrossRef]
- ISO 2631-4:2001. Mechanical Vibration and Shock—Evaluation of Human Exposure to Whole-Body Vibration—Part 4: Guidelines for the Evaluation of the Effects of Vibration and Rotational Motion on Passenger and Crew Comfort in Fixed-Guideway Transport Systems; ISO: Geneva, Switzerland, 2001. [Google Scholar]
- ISO 2631-5:2018. Mechanical Vibration and Shock—Evaluation of Human Exposure to Whole-Body Vibration—Part 5: Method for Evaluation of Vibration Containing Multiple Shocks; ISO: Geneva, Switzerland, 2018. [Google Scholar]
- PN-EN ISO 5349-1:2004. Drgania Mechaniczne—Pomiar i Wyznaczanie Ekspozycji Człowieka na Drgania Przenoszone Przez Kończyny Górne—Część 1: Wymagania Ogólne (Mechanical Vibration—Measurement and Determination of Human Exposure to Hand-Arm Vibration—Part 1: General Requirements); ISO: Geneva, Switzerland, 2004. [Google Scholar]
- BS 6841. 1987 Guide to Measurement and Evaluation of Human Exposure to Whole-Bodymechanical Vibration and Repeated Shocks; BSI: London, UK, 1987. [Google Scholar]
- PN-91 N-01354. Drgania—Dopuszczalne Wartości Przyspieszenia Drgań o Ogólnym Oddziaływaniu na Organizm Człowieka i Metody Oceny Narażenia, (Vibrations. Permissible Values of Vibration Acceleration with General Impact on the Human Body and Methods of Exposure Assessment). Available online: http://www.diagnostyka.net.pl/DIAGNOSTYKA-30-t-I-2004,81323,0,2.html (accessed on 1 December 2021).
- PN-91 S-04100. Drgania—Metody Badań i Oceny Drgań Mechanicznych na Stanowiskach Pracy w Pojazdach (Vibrations. Methods of Research and Evaluation of Mechanical Vibrations at Work Stations in Vehicles). Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiIx8TvzdX0AhU3s1YBHStkDaUQFnoECBEQAQ&url=https%3A%2F%2Fwww.wt.pw.edu.pl%2Fcontent%2Fdownload%2F6314%2F35474%2Ffile%2FEwa%2520Kardas-Cinal.pdf&usg=AOvVaw3LVyck1zo9cUhj8WdZAPfI (accessed on 1 December 2021).
- Changshuai, Y.; Haitao, L.; Siwei, G. Vibration Test and Vibration Reduction Design of UAV Load Radar. In Proceedings of the 2019 4th International Conference on Automation, Control and Robotics Engineering (CACRE2019), Shenzhen, China, 19–21 July 2019; Association for Computing Machinery: New York, NY, USA, 2019; Volume 70, pp. 1–6. [Google Scholar] [CrossRef]
- Zuska, A.; Szumska, E.; Frej, D. Analysis of the Impact of a Child Seat Mounting Method on Vertical Vibrations Affecting a Child in a Child Seat. In Proceedings of the 2020 XII International Science-Technical Conference Automotive Safety, Kielce, Poland, 21–23 October 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Frej, D.; Zuska, A.; Cadge, K. Analysis of vertical vibrations affecting a child transported in a child seat during a car passing over the release speed bump. Arch. Automot. Eng. Arch. Motoryz. 2019, 86, 111–125. [Google Scholar] [CrossRef]
- Giacomin, J. Some observations regarding the vibrational environment in child safety seats. Appl. Ergon. 2000, 31, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Wicher, J.; Więckowski, D. Influence of vibrations of the child seat on the comfort of child’s ride in a car (Wpływ drgań fotelika samochodowego na comfort podróżowania dziecka w samochodzie). Eksploat. I Niezawodn. 2010, 4, 102–110. [Google Scholar]
- Frej, D.; Grabski, P. The impact of the unbalanced rear wheel on the vibrating comfort of the child seat. Transp. Res. Procedia 2019, 40, 678–685. [Google Scholar] [CrossRef]
- Lai, H.H.; Chen, C.H.; Chen, Y.C.; Yeh, J.W.; Lai, C.F. Product design evaluation model of child car seat using gray relational analysis. Adv. Eng. Inform. 2009, 23, 165–173. [Google Scholar] [CrossRef]
- Caban, J. Study of eco-driving possibilities in passenger car used in urban traffic. Arch. Automot. Eng. Arch. Motoryz. 2021, 91, 37–48. [Google Scholar] [CrossRef]
- Smartbeat Car Seat Clip. Available online: https://engineering.usu.edu/ece/files/pdfs/senior-projects/fall2016-spring2017/smartbeat-car-seat-clip.pdf (accessed on 14 October 2021).
- Life-Saving Car Seat Alarms That Remind Parents There’s a Baby in the Back Seat. Available online: https://www.fatherly.com/gear/best-car-seat-alarms/ (accessed on 14 October 2021).
- Fojtlin, M.; Pokorny, J.; Fišer, J.; Toma, R.; Tuhovcak, J. Impact of measurable physical phenomena on contact thermal comfort. EPJ Web Conf. 2017, 143, 02026. [Google Scholar] [CrossRef] [Green Version]
- André, M.; De Vecchi, R.; Lamberts, R. User-centered environmental control: A review of current findings on personal conditioning systems and personal comfort models. Energy Build. 2020, 222, 110011. [Google Scholar] [CrossRef]
- Seniors’ Smart Car Seat Could Prevent Child Deaths. Available online: https://engineering.vanderbilt.edu/news/2013/seniors%E2%80%99-smart-car-seat-could-prevent-child-deaths/ (accessed on 14 October 2021).
- Vision Avionaut. Available online: https://avionaut.com/pl/ (accessed on 14 October 2021).
Parameter | Avionaut Pixel Child Seat | Avionaut AeroFIX Child Seat |
---|---|---|
Dimensions: | ||
height, cm | 44 | 73 |
width, cm | 58 | 43 |
depth, cm | 70 | 66 |
Mass of the child seat, kg | 2.5 | 4 |
Height of the transported child, cm | 45–86 | 67–105 |
Maximum mass of the transported child, kg | to 13 | to 17.5 |
Possibility to attach the child seat with the seat belts | Yes | Yes |
Possibility to attach the child seat with the ISOFIX base, which is stabilized with a supporting leg | Yes | Yes |
Forward-facing mounting possible | Yes | Yes |
Rearward-facing mounting possible | Yes | Yes |
Parameter | Value |
---|---|
Maximum measuring range, m/s2 | 98 |
Frequency band measured, Hz | 0.51000 |
Resonant frequency, Hz | ≥27,000 |
Sensitivity, mV/(m/s2) | 10.2 |
Number of axles | 3 |
Surface Type | Child Mass, kg | Comfort Rating Index | Avionaut Pixel Child Seat | Avionaut AeroFIX Child Seat | ||
---|---|---|---|---|---|---|
Acceleration Sensor Location | ||||||
Vehicle Rear Seat | The Seat of the Avionaut Pixel Child Seat | Isofix Base | The Seat of the Avionaut AeroFIX Child Seat | |||
asphalt road | 5 | rms, m/s2 | 0.314 | 0.396 | 0.354 | 0.617 |
VDV, m/s1.75 | 1.258 | 1.682 | 1.491 | 2.468 | ||
rqm, m/s2 | 0.452 | 0.604 | 0.536 | 0.887 | ||
10 | rms, m/s2 | 0.270 | 0.357 | 0.307 | 0.392 | |
VDV, m/s1.75 | 1.014 | 1.377 | 1.299 | 1.681 | ||
rqm, m/s2 | 0.364 | 0.495 | 0.467 | 0.604 | ||
15 | rms, m/s2 | 0.269 | 0.340 | 0.312 | 0.396 | |
VDV, m/s1.75 | 1.027 | 1.408 | 1.615 | 1.986 | ||
rqm, m/s2 | 0.369 | 0.506 | 0.580 | 0.713 | ||
gravel road | 5 | rms, m/s2 | 1.097 | 1.379 | 1.487 | 1.886 |
VDV, m/s1.75 | 4.744 | 6.066 | 6.376 | 7.505 | ||
rqm, m/s2 | 1.705 | 2.179 | 2.291 | 2.697 | ||
10 | rms, m/s2 | 1.136 | 1.474 | 1.418 | 1.753 | |
VDV, m/s1.75 | 4.580 | 6.210 | 5.786 | 7.116 | ||
rqm, m/s2 | 1.645 | 2.231 | 2.079 | 2.557 | ||
15 | rms, m/s2 | 0.896 | 1.298 | 1.206 | 1.575 | |
VDV, m/s1.75 | 3.601 | 5.405 | 5.291 | 6.489 | ||
rqm, m/s2 | 1.294 | 1.942 | 1.901 | 2.331 | ||
cobblestone road | 5 | rms, m/s2 | 2.452 | 2.336 | 2.862 | 3.556 |
VDV, m/s1.75 | 9.512 | 8.973 | 12.445 | 13.867 | ||
rqm, m/s2 | 3.418 | 3.224 | 4.471 | 4.982 | ||
10 | rms, m/s2 | 1.786 | 2.581 | 2.437 | 2.856 | |
VDV, m/s1.75 | 6.602 | 9.392 | 10.167 | 10.902 | ||
rqm, m/s2 | 2.372 | 3.375 | 3.653 | 3.917 | ||
15 | rms, m/s2 | 1.514 | 2.184 | 2.338 | 2.689 | |
VDV, m/s1.75 | 5.599 | 7.988 | 9.289 | 10.088 | ||
rqm, m/s2 | 2.012 | 2.870 | 3.337 | 3.624 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuska, A.; Frej, D.; Jackowski, J.; Żmuda, M. Research and Analysis of the Propagation of Vertical Vibrations in the Arrangement of a Vehicle Seat—A Child’s Seat. Sensors 2021, 21, 8230. https://doi.org/10.3390/s21248230
Zuska A, Frej D, Jackowski J, Żmuda M. Research and Analysis of the Propagation of Vertical Vibrations in the Arrangement of a Vehicle Seat—A Child’s Seat. Sensors. 2021; 21(24):8230. https://doi.org/10.3390/s21248230
Chicago/Turabian StyleZuska, Andrzej, Damian Frej, Jerzy Jackowski, and Marcin Żmuda. 2021. "Research and Analysis of the Propagation of Vertical Vibrations in the Arrangement of a Vehicle Seat—A Child’s Seat" Sensors 21, no. 24: 8230. https://doi.org/10.3390/s21248230