Influence of a Passenger Position Seating on Recline Seat on a Head Injury during a Frontal Crash
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lopez-Valdes, F.J.; Bohman, K.; Jimenez-Octavio, J.; Logan, D.; Raphael, W.; Quintana, L.; Fueyo, R.S.D.; Koppel, S. Understanding users’ characteristics in the selection of vehicle seating configurations and positions in fully automated vehicles. Traffic Inj. Prev. 2020, 21, S19–S24. [Google Scholar] [CrossRef] [PubMed]
- Koppel, S.; Jimenez Octavio, J.; Bohman, K.; Logan, D.; Raphael, W.; Quintana Jimenez, L.; Lopez-Valdes, F. Seating configuration and position preferences in fully automated vehicles. Traffic Inj. Prev. 2019, 20, S103–S109. [Google Scholar] [CrossRef] [PubMed]
- Reed, M.P.; Ebert, S.M.; Jones, M.L.H.; Hallman, J.J. Prevalence of non-nominal seat positions and postures among front-seat passengers. Traffic Inj. Prev. 2020, 21, S7–S12. [Google Scholar] [CrossRef]
- McMurry, T.L.; Poplin, G.S.; Shaw, G.; Panzer, M.B. Crash safety concerns for out-of-position occupant postures: A look toward safety in highly automated vehicles. Traffic Inj. Prev. 2018, 19, 582–587. [Google Scholar] [CrossRef] [PubMed]
- McMurry, T.L.; Cormier, J.M.; Daniel, T.; Scanlon, J.M.; Crandall, J.R. An omni-directional model of injury risk in planar crashes with application for autonomous vehicles. Traffic Inj. Prev. 2021, 22, S122–S127. [Google Scholar] [CrossRef]
- Park, J.; Ebert, S.M.; Reed, M.P.; Hallman, J.J. A statistical model including age to predict passenger postures in the rear seats of automobiles. Ergonomics 2016, 59, S796–S805. [Google Scholar] [CrossRef]
- Schaefer, L.C.; Junge, M.; Voros, I.; Kocaslan, K.; Becker, U. Odds ratios for reclined seating positions in real-world crashes. Accid. Anal. Prev. 2021, 161, 106357. [Google Scholar] [CrossRef]
- Whyte, T.; Kent, N.; Keay, L.; Coxon, K.; Brown, J. Frontal crash seat belt restraint effectiveness and comfort accessories used by older occupants. Traffic Inj. Prev. 2020, 21, S60–S65. [Google Scholar] [CrossRef]
- Jonsson, B.; Stenlund, H.; Svensson, M.Y.; Bjornstig, U. Seat adjustment–capacity and repeatability among occupants in a modern car. Ergonomics 2008, 51, 232–241. [Google Scholar] [CrossRef]
- Larsson, K.J.; Pipkorn, B.; Iraeus, J.; Forman, J.; Hu, J. Evaluation of a diverse population of morphed human body models for prediction of vehicle occupant crash kinematics. Comput. Methods Biomech. Biomed. Eng. 2021, 29, S1–S31. [Google Scholar] [CrossRef]
- Dissanaike, S.; Kaufman, R.; Mack, C.D.; Mock, C.; Bulger, E. The effect of reclined seats on mortality in motor vehicle collisions. J. Trauma 2008, 64, 614–619. [Google Scholar] [CrossRef]
- Laughery, K.R.; Wogalter, M.S. Do Not Recline That Seat. In Forensic Human Factors and Ergonomics: Case Studies and Analyses, 1st ed.; Wogalter, M.S., Ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 303–314. [Google Scholar]
- Ambrósio, J.A.C.; Pereira, M.F.O.S.; da Silva, F.P. Crashworthiness of Transportation Systems: Structural Impact and Occupant Protection, 1st ed.; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Porta, D.J. Biomechanics of impact injury. In Forensic Medicine of the Lower Extremity, 1st ed.; Rich, J., Dean, D.E., Powers, R.H., Eds.; Humana Press Inc.: Totowa, NJ, USA, 2005; pp. 279–310. [Google Scholar]
- Grebonval, C.; Trosseille, X.; Petit, P.; Wang, X.; Beillas, P. Effects of seat pan and pelvis angles on the occupant response in a reclined position during a frontal crash. PLoS ONE 2021, 16, e0257292. [Google Scholar] [CrossRef] [PubMed]
- Richardson, R.; Jayathirtha, M.; Chastain, K.; Donlon, J.P.; Forman, J.; Gepner, B.; Ostling, M.; Mroz, K.; Shaw, G.; Pipkorn, B.; et al. Thoracolumbar spine kinematics and injuries in frontal impacts with reclined occupants. Traffic Inj. Prev. 2020, 21, S66–S71. [Google Scholar] [CrossRef]
- Draper, D.; Huf, A.; Wernicke, P.; Peldschus, S. The Influence of Reclined Seating Positions on Lumbar Spine Kinematics and Loading in Frontal Impact Scenarios. In Proceedings of the 26th International Technical Conference on the Enhanced Safety of Vehicles, Eindhoven, The Netherlands, 10–13 June 2019; ESV: Eindhoven, The Netherlands, 2019; p. S1-S10-0062. [Google Scholar]
- Weaver, A.A.; Talton, J.W.; Barnard, R.T.; Schoell, S.L.; Swett, K.R.; Stitzel, J.D. Estimated injury risk for specific injuries and body regions in frontal motor vehicle crashes. Traffic Inj. Prev. 2015, 16, 108–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouhana, S.W.; Jedrzejczak, E.A.; McCleary, J.D. Assessing submarining and abdominal injury risk in the Hybrid III family of dummies: Part II—Development of the small female frangible abdomen. SAE Trans. 1990, 99, S1760–S1788. [Google Scholar]
- Dehner, C.; Schick, S.; Hell, W.; Richter, P.; Kraus, M.; Kramer, M. In-vivo kinematics of the cervical spine in frontal sled tests. Glob. J. Health Sci. 2013, 5, 115–141. [Google Scholar] [CrossRef] [Green Version]
- Humm, J.R.; Yoganandan, N.; Driesslein, K.G.; Pintar, F.A. Three-dimensional kinematic corridors of the head, spine, and pelvis for small female driver seat occupants in near- and far-side oblique frontal impacts. Traffic Inj. Prev. 2018, 19, 64–69. [Google Scholar] [CrossRef]
- Humm, J.; Yoganandan, N. Development of chest deflection injury risk curve in oblique frontal small female PMHS sled tests. Traffic Inj. Prev. 2020, 21, 161–163. [Google Scholar] [CrossRef]
- Couturier, S.; Faure, J.; Satué, R.; Huguet, J.; Hordonneau, J. Procedure to assess submarining in frontal impact. In Proceedings of the 20th International Conference on the Enhanced Safety of Vehicles, Lyon, France, 18–21 June 2007; ESV: Lyon, France, 2007; pp. S1–S10. [Google Scholar]
- Pywell, J.F. Automotive seat design affecting comfort and safety. In Proceedings of the Seat System Comfort and Safety, SAE International Congress & Exposition, Detroit, MI, USA, 1–5 March 1993; SAE Global Mobility Database: Warrendale, PA, USA, 1993; p. 930108. [Google Scholar]
- Richardson, R.; Donlon, J.P.; Chastain, K.; Shaw, G.; Forman, J.; Sochor, S.; Jayathirtha, M.; Kopp, K.; Overby, B.; Gepner, B.; et al. Test methodology for evaluating the reclined seating environment with human surrogates. In Proceedings of the 26th International Technical Conference on the Enhanced Safety of Vehicles, Eindhoven, The Netherlands, 10–13 June 2019; ESV: Eindhoven, The Netherlands, 2019; p. 19-0243. [Google Scholar]
- Gepner, B.D.; Draper, D.; Mroz, K.; Richardson, R.; Ostling, M.; Pipkorn, B.; Forman, J.L.; Kerrigan, J.R. Comparison of human body models in frontal crashes with reclined seatback. In Proceedings of the International Research Council on the Biomechanics of Injury, Florence, Italy, 11–13 September 2019; IRCOBI: Florence, Italy, 2019. IRC-19-44. pp. 293–307. [Google Scholar]
- Uriot, J.; Potier, P.; Baudrit, P.; Trosseille, X.; Richard, O.; Douard, R. Comparison of HII, HIII and THOR dummy responses with respect to PMHS sled tests. In Proceedings of the International Research Council on the Biomechanics of Injury, Lyon, France, 9–11 September 2015; IRCOBI: Lyon, France, 2015. IRC-15-55. pp. 435–451. [Google Scholar]
- Richardson, R.; Donlon, J.P.; Richardson, R.; Donlon, J.-P.; Jayathirtha, M.; Forman, J.L.; Shaw, G.; Östling, M.; Mroz, K.; Pipkorn, B. Kinematic and Injury Response of Reclined PMHS in Frontal Impacts. Stapp Car Crash J. 2020, 64, S83–S153. [Google Scholar]
- Tang, L.; Zheng, J.; Hu, J. A numerical investigation of factors affecting lumbar spine injuries in frontal crashes. Accid. Anal. Prev. 2020, 136, 105400. [Google Scholar] [CrossRef]
- Tran, T.D.; Holtz, J.; Müller, G.; Müller, S. Validation of MADYMO human body model in braking maneuver with highly reclined seatback. Int. J. Crashworth. 2021, S1–S10. [Google Scholar] [CrossRef]
- Freeman, C.; Bacon, D. The 3-Dimensional Trajectories of Dummy Car Occupants Restrained by Seat Belts in Crash Simulations. SAE Trans. 1988, 97, 1288–1297. [Google Scholar]
- Parenteau, C.S.; Viano, D.C. Driver and front passenger injury in frontal crashes: Update on the effect of unbelted rear occupants. Traffic Inj. Prev. 2018, 19, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhang, K.; Reed, M.P.; Wang, J.T.; Neal, M.; Lin, C.H. Frontal crash simulations using parametric human models representing a diverse population. Traffic Inj. Prev. 2019, 20, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Boyle, K.; Fanta, A.; Reed, M.P.; Fischer, K.; Smith, A.; Adler, A.; Hu, J. Restraint systems considering occupant diversity and pre-crash posture. Traffic Inj. Prev. 2020, 21, 31–36. [Google Scholar] [CrossRef]
- Rawska, K.; Gepner, B.; Moreau, D.; Kerrigan, J.R. Submarining sensitivity across varied seat configurations in autonomous driving system environment. Traffic Inj. Prev. 2020, 21, S1–S6. [Google Scholar] [CrossRef]
- Rawska, K.; Gepner, B.; Kulkarni, S.; Chastain, K.; Zhu, J.; Richardson, R.; Perez-Rapela, D.; Forman, J.; Kerrigan, J.R. Submarining sensitivity across varied anthropometry in an autonomous driving system environment. Traffic Inj. Prev. 2019, 20, S123–S127. [Google Scholar] [CrossRef]
- Lee, W.; Lee, H.C.; Kwak, T.; Kim, H.J.; Kim, S.R.; Kim, D. Severe injury of pyknic female drivers induced by sitting behaviour. Int. J. Crashworth. 2022, 27, S1–S8. [Google Scholar] [CrossRef]
- Reed, M.P.; Ebert, S.M.; Jones, M.L.H. Posture and belt fit in reclined passenger seats. Traffic Inj. Prev. 2019, 20, S38–S42. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Kim, J.E.; Ma, X.; Shih, A.; Laud, P.W.; Pintar, F.; Shen, W.; Heymsfield, S.B.; Allison, D.B. BMI and risk of serious upper body injury following motor vehicle crashes: Concordance of real-world and computer-simulated observations. PLoS Med. 2010, 7, e1000250. [Google Scholar] [CrossRef] [Green Version]
- Gepner, B.D.; Joodaki, H.; Sun, Z.; Jayathirtha, M.; Kim, T.; Forman, J.L.; Kerrigan, J.R. Performance of the obese GHBMC models in the sled and belt pull test conditions. In Proceedings of the International Research Council on the Biomechanics of Injury, Athens, Greece, 12–14 September 2018; IRCOBI: Athens, Greece, 2018. IRC-18-60. pp. 355–368. [Google Scholar]
- Rouhana, S.W.; Viano, D.C.; Jedrzejczak, E.A.; McCleary, J.D. Assessing Submarining and Abdominal Injury Risk in the Hybrid III Family of Dummies. SAE Trans 1989, 98, S1824–S1846. [Google Scholar]
- Hu, J.; Klinich, K.D.; Reed, M.P.; Kokkolaras, M.; Rupp, J.D. Development and validation of a modified Hybrid-III six-year-old dummy model for simulating submarining in motor-vehicle crashes. Med. Eng. Phys. 2012, 34, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Ammori, M.B.; Abu-Zidan, F.M. The biomechanics of lower limb injuries in frontal-impact road traffic collisions. Afr. Health Sci. 2018, 18, S321–S332. [Google Scholar] [CrossRef] [PubMed]
- Gepner, B.; Rawska, K.; Richardson, R.; Kulkarni, S.; Chastain, K.; Zhu, J.; Forman, J.; Kerrigan, J. Challenges for occupant safety in highly automated vehicles across various anthropometries. In Proceedings of the 26th International Technical Conference on the Enhanced Safety of Vehicles, Eindhoven, The Netherlands, 10–13 June 2019; ESV: Eindhoven, The Netherlands, 2019; p. 19-0335. [Google Scholar]
- Viano, D.C.; Arepally, S. Assessing the safety performance of occupant restraint systems. SAE Trans. 1990, 99, 1913–1939. [Google Scholar]
- Zaseck, L.W.; Orton, N.R.; Gruber, R.; Rupp, J.; Scherer, R.; Reed, M.; Hu, J. The influence of personal protection equipment, occupant body size, and restraint system on the frontal impact responses of Hybrid III ATDs in tactical vehicles. Traffic Inj. Prev. 2017, 18, S642–S649. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Liu, G. Optimal design of rear-seat restraint system based on new safety seat during frontal collisions. J. Automob. Eng. 2022, 09544070221076899. [Google Scholar] [CrossRef]
- Carvalho, M.; Ambrósio, J. Identification of multibody vehicle models for crash analysis using an optimization methodology. Multibody Syst. Dyn. 2010, 24, S325–S345. [Google Scholar] [CrossRef]
- O’Connor, C.S.; Rao, M.K. Dynamic Simulations of Belted Occupants with Submarining. SAE Trans. 1990, 99, S1562–S1576. [Google Scholar]
- Östling, M.; Sunnevång, C.; Svensson, C.; Kock, H. Potential future seating positions and the impact on injury risks in a Learning Intelligent Vehicle (LIV)—How to avoid submarining in a reclined seating position in a frontal crash. In Proceedings of the VDI-Tagung Fahrzeugsicherheit, Berlin, Germany, 28–29 November 2017; VDI-Berichte: Berlin, Germany, 2017; pp. 261–276. [Google Scholar]
- Shaw, G.; Lessley, D.; Ash, J.; Acosta, S.; Heltzel, S.; Riley, P.; Kim, T.; Crandall, J. Pelvic restraint cushion sled test evaluation of pelvic forward motion. Traffic Inj. Prev. 2018, 19, 250–255. [Google Scholar] [CrossRef]
- Tang, L.; Liu, J. Safety analysis of belted occupant in reclining seat. Int. J. Veh. Des. 2012, 60, 39–56. [Google Scholar] [CrossRef]
- Biard, R.; Cesari, D.; Derrien, Y. Advisability and Reliability of Submarining Detection. SAE Trans. 1987, 96, S404–S415. [Google Scholar]
- Lin, H.; Gepner, B.; Wu, T.; Forman, J.; Panzer, M. Effect of seatback recline on occupant model response in frontal crashes. In Proceedings of the IRCOBI Conference, Athens, Greece, 12–14 September 2018. [Google Scholar]
- Yamada, K.; Gotoh, M.; Kitagawa, Y.; Yasuki, T. Simulation of occupant posture change during autonomous emergency braking and occupant kinematics in frontal collision. In Proceedings of the 2016 IRCOBI Conference, Malaga, Spain, 14–16 September 2016; pp. 261–274. [Google Scholar]
- Siegmund, G.P.; Chimich, D.D.; Heinrichs, B.E.; DeMarco, A.L.; Brault, J.R. Variations in occupant response with seat belt slack and anchor location during moderate frontal impacts. Traffic Inj Prev. 2005, 6, S38–S43. [Google Scholar] [CrossRef] [PubMed]
- Adomeit, D.; Heger, A. Motion Sequence Criteria and Design Proposals for Restraint Devices in Order to Avoid Unfavorable Biomechanic Conditions and Submarining. SAE Trans. 1975, 84, S3150–S3159. [Google Scholar]
- Gaewsky, J.P.; Weaver, A.A.; Koya, B.; Stitzel, J.D. Driver Injury Risk Variability in Finite Element Reconstructions of Crash Injury Research and Engineering Network (CIREN) Frontal Motor Vehicle Crashes. Traffic Inj. Prev. 2015, 16, S124–S155. [Google Scholar] [CrossRef] [PubMed]
- Horsch, J.D.; Hering, W.E. A Kinematic Analysis of Lap-Belt Submarining for Test Dummies. SAE Trans. 1989, 98, S1847–S1854. [Google Scholar]
- Forman, J.; Poplin, G.S.; Shaw, C.G.; McMurry, T.L.; Schmidt, K.; Ash, J.; Sunnevang, C. Automobile injury trends in the contemporary fleet: Belted occupants in frontal collisions. Traffic Inj. Prev. 2019, 20, S607–S612. [Google Scholar] [CrossRef]
- Östh, J.; Bohman, K.; Jakobsson, L. Evaluation of kinematics and restraint interaction when repositioning a driver from a reclined to an upright position prior to frontal impact using active human body model simulations. In Proceedings of the International Research Council on the Biomechanics of Injury, Munich, Germany, 8–10 September 2020; IRCOBI: Munich, Germany, 2020. IRC-20-50. pp. 358–380. [Google Scholar]
- Muehlbauer, J.; Schick, S.; Draper, D.; Lopez-Valdes, F.J.; Symeonidis, I.; Peldschus, S. Feasibility study of a safe sled environment for reclined frontal deceleration tests with human volunteers. Traffic Inj. Prev. 2019, 20 (Suppl. 2), S171–S174. [Google Scholar] [CrossRef]
- Board, S.T.S. Instrumentation for Impact Test—Part 1—Electronic Instrumentation; SAE International: Wichita, Kansas, 2014. [Google Scholar]
- Boyle, K.J.; Reed, M.P.; Zaseck, L.W.; Hu, J. A human modeling study on occupant kinematics in highly reclined seats during frontal crashes. In Proceedings of the International Research Council on the Biomechanics of Injury, Florence, Italy, 11–13 September 2019; IRCOBI: Florence, Italy, 2019. IRC-19-43. pp. 282–292. [Google Scholar]
- Park, J.; Ebert, S.M.; Reed, M.P.; Hallman, J.J. Comparison of three-point belt fit between humans and ATDs in rear seats. Traffic Inj. Prev. 2018, 19 (Suppl. 1), S65–S69. [Google Scholar] [CrossRef]
- DeJeammes, M.; Biard, R.; Derrien, Y. Factors influencing the estimation of submarining on the dummy. SAE Trans. 1981, 90, 3254–3267. [Google Scholar]
- Jones, D.A.; Gaewsky, J.P.; Kelley, M.E.; Weaver, A.A.; Miller, A.N.; Stitzel, J.D. Lumbar vertebrae fracture injury risk in finite element reconstruction of CIREN and NASS frontal motor vehicle crashes. Traffic Inj. Prev. 2016, 17, S109–S124. [Google Scholar] [CrossRef]
Input Factors | Min Value | Centre Value | Max Value |
---|---|---|---|
Seat back angle | 110° | 130° | 145° |
Crash pulse | 3 (±0.3) g | 4 (±0.3) g | 5 (±0.3) g |
Crash pulse ΔV | 5 (±0.4) m/s | 6 (±0.4) m/s | 7 (±0.4) m/s |
Seat Back Angle | Crash Pulse (g) | HIC | Duration (ms) | Ave. Acceler. (g) | Min Acceler. (g) | Max Acceler. (g) | Total Acceler. (g) |
---|---|---|---|---|---|---|---|
110° | 3 | 24.6 | 92.5 | 9.3 | −1.1 | 11.4 | 12.5 |
4 | 34.1 | 86.3 | 10.9 | −0.6 | 13.6 | 14.2 | |
5 | 48.0 | 95.0 | 12.1 | −1.4 | 15.3 | 16.7 | |
130° | 3 | 19.1 | 92.5 | 7.7 | −0.7 | 9.8 | 10.5 |
4 | 52.0 | 104.5 | 12.0 | −1.7 | 15.2 | 16.9 | |
5 | 32.6 | 123.5 | 9.3 | −1.0 | 11.4 | 12.4 | |
145° | 3 | 26.9 | 106.9 | 9.14 | −0.5 | 11.1 | 11.5 |
4 | 47.5 | 99.9 | 11.78 | −2.6 | 15.0 | 17.5 | |
5 | 66.5 | 86.8 | 14.25 | −4.0 | 19.2 | 23.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Górniak, A.; Matla, J.; Górniak, W.; Magdziak-Tokłowicz, M.; Krakowian, K.; Zawiślak, M.; Włostowski, R.; Cebula, J. Influence of a Passenger Position Seating on Recline Seat on a Head Injury during a Frontal Crash. Sensors 2022, 22, 2003. https://doi.org/10.3390/s22052003
Górniak A, Matla J, Górniak W, Magdziak-Tokłowicz M, Krakowian K, Zawiślak M, Włostowski R, Cebula J. Influence of a Passenger Position Seating on Recline Seat on a Head Injury during a Frontal Crash. Sensors. 2022; 22(5):2003. https://doi.org/10.3390/s22052003
Chicago/Turabian StyleGórniak, Aleksander, Jędrzej Matla, Wanda Górniak, Monika Magdziak-Tokłowicz, Konrad Krakowian, Maciej Zawiślak, Radosław Włostowski, and Jacek Cebula. 2022. "Influence of a Passenger Position Seating on Recline Seat on a Head Injury during a Frontal Crash" Sensors 22, no. 5: 2003. https://doi.org/10.3390/s22052003
APA StyleGórniak, A., Matla, J., Górniak, W., Magdziak-Tokłowicz, M., Krakowian, K., Zawiślak, M., Włostowski, R., & Cebula, J. (2022). Influence of a Passenger Position Seating on Recline Seat on a Head Injury during a Frontal Crash. Sensors, 22(5), 2003. https://doi.org/10.3390/s22052003