Next Article in Journal
Graphene-Based Sensor for Detection of Bacterial Pathogens
Previous Article in Journal
Deep Transfer Learning for Land Use and Land Cover Classification: A Comparative Study
 
 
Communication

Micrometer Sized Hexagonal Chromium Selenide Flakes for Cryogenic Temperature Sensors

1
National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
2
Faculty of Physics, University of Bucharest, 405 Atomiștilor Street, P.O. Box MG-11, 077125 Magurele, Romania
*
Author to whom correspondence should be addressed.
Academic Editor: Tomoyuki Yokota
Sensors 2021, 21(23), 8084; https://doi.org/10.3390/s21238084
Received: 20 October 2021 / Revised: 19 November 2021 / Accepted: 30 November 2021 / Published: 3 December 2021
(This article belongs to the Section Optical Sensors)
Nanoscale thermometers with high sensitivity are needed in domains which study quantum and classical effects at cryogenic temperatures. Here, we present a micrometer sized and nanometer thick chromium selenide cryogenic temperature sensor capable of measuring a large domain of cryogenic temperatures down to tenths of K. Hexagonal Cr-Se flakes were obtained by a simple physical vapor transport method and investigated using scanning electron microscopy, energy dispersive X-ray spectrometry and X-ray photoelectron spectroscopy measurements. The flakes were transferred onto Au contacts using a dry transfer method and resistivity measurements were performed in a temperature range from 7 K to 300 K. The collected data have been fitted by exponential functions. The excellent fit quality allowed for the further extrapolation of resistivity values down to tenths of K. It has been shown that the logarithmic sensitivity of the sensor computed over a large domain of cryogenic temperature is higher than the sensitivity of thermometers commonly used in industry and research. This study opens the way to produce Cr-Se sensors for classical and quantum cryogenic measurements. View Full-Text
Keywords: chromium selenide; temperature sensor; cryogenics chromium selenide; temperature sensor; cryogenics
Show Figures

Figure 1

MDPI and ACS Style

Buruiana, A.-T.; Sava, F.; Iacob, N.; Matei, E.; Bocirnea, A.E.; Onea, M.; Galca, A.-C.; Mihai, C.; Velea, A.; Kuncser, V. Micrometer Sized Hexagonal Chromium Selenide Flakes for Cryogenic Temperature Sensors. Sensors 2021, 21, 8084. https://doi.org/10.3390/s21238084

AMA Style

Buruiana A-T, Sava F, Iacob N, Matei E, Bocirnea AE, Onea M, Galca A-C, Mihai C, Velea A, Kuncser V. Micrometer Sized Hexagonal Chromium Selenide Flakes for Cryogenic Temperature Sensors. Sensors. 2021; 21(23):8084. https://doi.org/10.3390/s21238084

Chicago/Turabian Style

Buruiana, Angel-Theodor, Florinel Sava, Nicusor Iacob, Elena Matei, Amelia Elena Bocirnea, Melania Onea, Aurelian-Catalin Galca, Claudia Mihai, Alin Velea, and Victor Kuncser. 2021. "Micrometer Sized Hexagonal Chromium Selenide Flakes for Cryogenic Temperature Sensors" Sensors 21, no. 23: 8084. https://doi.org/10.3390/s21238084

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop