Nondestructive Testing and Visualization of Catechin Content in Black Tea Fermentation Using Hyperspectral Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acquisition of Experimental Samples
2.2. Detection of Catechin Content
2.3. Specific Operations for Component Detection
2.4. Acquisition of Hyperspectral Data
2.5. Data Treatment and Analysis
2.5.1. Data Standardization
2.5.2. Variable Screening and Dimension Reduction
2.5.3. Modeling Algorithms and Evaluation Criteria
3. Results and Analyses
3.1. Change Trends of Catechin Content during Different Fermentation Periods
3.2. Comparison of Catechin Content at Different Periods and Different Positions of Fermenting Leaves
3.3. Selection of Optimal Pretreatment Algorithms
3.4. Selection of Optimal Variable Screening Algorithms
3.5. Selection of Optimal Models
3.6. Visualized Analysis of Catechin Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jin, G.; Wang, Y.; Li, L.; Shen, S.; Deng, W.W.; Zhang, Z.; Ning, J. Intelligent evaluation of black tea fermentation degree by FT-NIR and computer vision based on data fusion strategy. LWT 2020, 125, 109216. [Google Scholar] [CrossRef]
- Ning, J.M.; Yan, L.; Zhang, Z.Z.; Wei, L.D.; Li, L.Q.; Fang, J.T.; Huang, C.W. Rapid and Dynamic Determination Models of Amino Acids and Catechins Concentrations during the Processing Procedures of Keemun Black Tea. Guang Pu Xue Yu Guang Pu Fen Xi = Guang Pu 2015, 35, 3422–3426. [Google Scholar] [PubMed]
- Chen, S.; Wang, C.Y.; Tsai, C.Y.; Yang, I.C.; Luo, S.J.; Chuang, Y.K. Fermentation quality evaluation of tea by estimating total catechins and theanine using near-infrared spectroscopy. Vib. Spectrosc. 2021, 115, 103278. [Google Scholar] [CrossRef]
- Jin, G.; Wang, Y.J.; Li, M.; Li, T.; Huang, W.J.; Li, L.; Deng, W.-W.; Ning, J. Rapid and real-time detection of black tea fermentation quality by using an inexpensive data fusion system. Food Chem. 2021, 358, 129815. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Huang, D.; Hu, X.J.; Tong, W.H.; Han, B.L.; Tian, J.P.; Luo, H.B. Application of hyperspectral technology in detection of agricultural products and food: A Review. Food Sci. Nutr. 2020, 8, 5206–5214. [Google Scholar] [CrossRef]
- Wang, Y.J.; Li, L.Q.; Shen, S.S.; Liu, Y.; Ning, J.M.; Zhang, Z.Z. Rapid detection of quality index of postharvest fresh tea leaves using hyperspectral imaging. J. Sci. Food Agric. 2020, 100, 3803–3811. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, F.; Xu, J.; Sha, J.; Zhao, Z.; He, Y.; Li, X. Visual detection of the moisture content of tea leaves with hyperspectral imaging technology. J. Food Eng. 2019, 248, 89–96. [Google Scholar] [CrossRef]
- Yuan, L.; Yan, P.; Han, W.; Huang, Y.; Wang, B.; Zhang, J.; Zhang, H.; Bao, Z. Detection of anthracnose in tea plants based on hyperspectral imaging. Comput. Electron. Agric. 2019, 167, 105039. [Google Scholar] [CrossRef]
- Dong, C.; Ye, Y.; Yang, C.; An, T.; Jiang, Y.; Ye, Y.; Li, Y.; Yang, Y. Rapid detection of catechins during black tea fermentation based on electrical properties and chemometrics. Food Biosci. 2021, 40, 100855. [Google Scholar] [CrossRef]
- Hua, J.; Xu, Q.; Yuan, H.; Wang, J.; Wu, Z.; Li, X.; Jiang, Y. Effects of novel fermentation method on the biochemical components change and quality formation of Congou black tea. J. Food Compos. Anal. 2021, 96, 103751. [Google Scholar] [CrossRef]
- Ren, G.; Wang, Y.; Ning, J.; Zhang, Z. Highly identification of keemun black tea rank based on cognitive spectroscopy: Near infrared spectroscopy combined with feature variable selection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 230, 118079. [Google Scholar] [CrossRef]
- Li, H.; Zhang, B.; Hu, W.; Liu, Y.; Dong, C.; Chen, Q. Monitoring black tea fermentation using a colorimetric sensor array-based artificial olfaction system. J. Food Process. Preserv. 2018, 42, e13348. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.L.; Wang, Q.Z.; Peng, G.H. Determination of catechin in lotus rhizomes by high-performance liquid chromatography. Int. J. Food Sci. Nutr. 2009, 60, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.Q.; Ma, J.Q.; Ma, C.L.; Yao, M.Z.; Chen, L. Determination of catechin content in representative Chinese tea germplasms. J. Agric. Food Chem. 2014, 62, 9436–9441. [Google Scholar] [CrossRef]
- Yang, C.; Zhao, Y.; An, T.; Liu, Z.; Jiang, Y.; Li, Y.; Dong, C. Quantitative prediction and visualization of key physical and chemical components in black tea fermentation using hyperspectral imaging. LWT 2021, 141, 110975. [Google Scholar] [CrossRef]
- Sun, J.; Cao, Y.; Zhou, X.; Wu, M.; Sun, Y.; Hu, Y. Detection for lead pollution level of lettuce leaves based on deep belief network combined with hyperspectral image technology. J. Food Saf. 2020, 41, e12866. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, L.; Xie, F.; Yang, C.; Jayamanne, V.S.; Tan, H.; Jiang, X.; Yang, H. Study of assessment of green tea’ grades in GC-MS determination of aromatic components based on principal component analysis (PCA). J. Food Process. Preserv. 2020, 45, e15047. [Google Scholar] [CrossRef]
- Shahsavar, A.; Moayedi, H.; Al-Waeli, A.H.; Sopian, K.; Chelvanathan, P. Machine learning predictive models for optimal design of building-integrated photovoltaic-thermal collectors. Int. J. Energy Res. 2020, 44, 5675–5695. [Google Scholar] [CrossRef]
- Chen, L.; Liu, F.; Yang, Y.; Tu, Z.; Lin, J.; Ye, Y.; Xu, P. Oxygen-enriched fermentation improves the taste of black tea by reducing the bitter and astringent metabolites. Food Res. Int. 2021, 148, 110613. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, N.; Liu, J.; Xie, J.; Han, J. Combination of machine learning and VIRS for predicting soil organic matter. J. Soils Sediments 2021, 21, 2578–2588. [Google Scholar] [CrossRef]
- Yun, Y.H.; Bin, J.; Liu, D.L.; Xu, L.; Yan, T.L.; Cao, D.S.; Xu, Q.S. A hybrid variable selection strategy based on continuous shrinkage of variable space in multivariate calibration. Anal. Chim. Acta 2019, 1058, 58–69. [Google Scholar] [CrossRef]
- Mishra, P.; Woltering, E.J. Identifying key wavenumbers that improve prediction of amylose in rice samples utilizing advanced wavenumber selection techniques. Talanta 2021, 224, 121908. [Google Scholar] [CrossRef] [PubMed]
- Khodaee SM, M.; Hashemi, M.; Mirlohi, A.; Majidi, M.M.; Sukumaran, S.; Moghaddam, M.E.; Abdollahi, M. Root characteristics of an elite spring wheat panel under contrasting water treatments and their genome-wide association study. Rhizosphere 2021, 19, 100413. [Google Scholar] [CrossRef]
- Zhou, Y.; Lao, C.; Yang, Y.; Zhang, Z.; Chen, H.; Chen, Y.; Chen, J.; Ning, J.; Yang, N. Diagnosis of winter-wheat water stress based on UAV-borne multispectral image texture and vegetation indices. Agric. Water Manag. 2021, 256, 107076. [Google Scholar] [CrossRef]
- Arias-Rodriguez, L.F.; Duan, Z.; Díaz-Torres, J.D.J.; Basilio Hazas, M.; Huang, J.; Kumar, B.U.; Tuo, Y.; Disse, M. Integration of Remote Sensing and Mexican Water Quality Monitoring System Using an Extreme Learning Machine. Sensors 2021, 21, 4118. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Wang, D.; Feng, Z.; Li, W.; Cui, D. Integration of vibration and optical techniques for watermelon firmness assessment. Comput. Electron. Agric. 2021, 187, 106307. [Google Scholar] [CrossRef]
- Amsaraj, R.; Mutturi, S. Real-coded GA coupled to PLS for rapid detection and quantification of tartrazine in tea using FT-IR spectroscopy. LWT 2021, 139, 110583. [Google Scholar] [CrossRef]
- Sandasi, M.; Chen, W.; Vermaak, I.; Viljoen, A. Non-destructive quality assessment of herbal tea blends using hyperspectral imaging. Phytochem. Lett. 2018, 24, 94–101. [Google Scholar] [CrossRef]
- Tian, X.Y.; Aheto, J.H.; Bai, J.W.; Dai, C.; Ren, Y.; Chang, X. Quantitative analysis and visualization of moisture and anthocyanins content in purple sweet potato by Vis–NIR hyperspectral imaging. J. Food Process. Preserv. 2020, 45, e15128. [Google Scholar] [CrossRef]
Algorithm | Endoplasmic Composition | Characteristic Wavelengths |
---|---|---|
SPA | The total amount of catechins | 406, 457, 505, 536, 547, 566, 580, 625, 650, 731, 776, 891, 942, and 947 nm |
VCPA-GA | EGC | 436, 457, 492, 513, 554, 579, 625, 674, 683, 694, 705, 727, 729, 730, 743, 757, 766, 767, 832, 835, 838, 846, 847, 886, 893, 897, 901, 914, 917, 938, 952, and 953 nm |
VCPA-IRIV | C | 417, 418, 435, 441, 442, 486, 507, 526, 548, 556, 614, 615, 623, 679, 696, 707, 786, 789, 797, 841, 887, 904, 905, 927, 928, 941, and 942 nm |
VCPA-IRIV | EC | 436, 441, 447, 497, 499, 557, 558, 607, 627, 638, 656, 667, 683, 689, 696, 786, 883, 886, 887, 901, 904, 955, 956, and 957 nm |
VCPA-IRIV | EGCG | 447, 453, 455, 496, 503, 505, 526, 527, 587, 589, 606, 627, 628, 635, 637, 646, 732, 735, 796, 797, 807, 828, 836, 838, 839, 912, 915, 927, and 948 nm |
VCPA-IRIV | ECG | 447, 453, 455, 496, 503, 505, 526, 527, 587, 589, 606, 627, 628, 635, 637, 646, 732, 735, 796, 797, 807, 828, 836, 838, 839, 912, 915,927, and 948 nm |
Physical and Chemical Composition | Pretreatment Method PCs | Calibration Set | Prediction Set | |||
---|---|---|---|---|---|---|
Rc | RMSECV | Rp | RMSEP | |||
Total catechins | Z-Score | 5 | 0.918 | 0.502 | 0.911 | 0.592 |
EGC | MSC | 10 | 0.810 | 0.0095 | 0.769 | 0.0102 |
C | Z-Score | 9 | 0.889 | 0.0301 | 0.883 | 0.0398 |
EC | SNV | 7 | 0.903 | 0.0218 | 0.891 | 0.0311 |
EGCG | Z-Score | 9 | 0.928 | 0.116 | 0.920 | 0.151 |
ECG | SNV | 9 | 0.929 | 0.117 | 0.923 | 0.140 |
Catechin Component | Methods | Variable Number | PCs | Calibration Set | Prediction Set | |||
---|---|---|---|---|---|---|---|---|
Rc | RMSECV | Rp | RMSEP | RPD | ||||
Total catechins | SPA-PLS | 14 | 6 | 0.977 | 0.268 | 0.979 | 0.239 | 4.46 |
SPA-SVR | 14 | 8 | 0.994 | 0.142 | 0.987 | 0.193 | 5.92 | |
SPA-ELM | 14 | 7 | 0.994 | 0.136 | 0.989 | 0.175 | 6.50 | |
EGC | VCPA-GA-PLS | 32 | 8 | 0.946 | 0.0053 | 0.956 | 0.0050 | 2.03 |
VCPA-GA-SVR | 32 | 8 | 0.983 | 0.0030 | 0.972 | 0.0041 | 3.78 | |
VCPA-GA-ELM | 32 | 9 | 0.954 | 0.0048 | 0.926 | 0.0059 | 2.66 | |
C | VCPA-IRIV-PLS | 27 | 10 | 0.993 | 0.0076 | 0.991 | 0.0087 | 6.11 |
VCPA-IRIV-SVR | 27 | 7 | 0.996 | 0.0060 | 0.993 | 0.0082 | 6.72 | |
VCPA-IRIV-ELM | 27 | 9 | 0.996 | 0.0056 | 0.992 | 0.0086 | 6.37 | |
EC | VCPA-IRIV-PLS | 24 | 9 | 0.984 | 0.0113 | 0.987 | 0.0086 | 4.68 |
VCPA-IRIV-SVR | 24 | 7 | 0.996 | 0.0059 | 0.990 | 0.0075 | 5.69 | |
VCPA-IRIV-ELM | 24 | 8 | 0.995 | 0.0064 | 0.988 | 0.0081 | 5.25 | |
EGCG | VCPA-IRIV-PLS | 29 | 10 | 0.991 | 0.0953 | 0.991 | 0.0868 | 6.24 |
VCPA-IRIV-SVR | 29 | 5 | 0.996 | 0.0684 | 0.994 | 0.0793 | 7.33 | |
VCPA-IRIV-ELM | 29 | 7 | 0.995 | 0.0701 | 0.993 | 0.0825 | 7.00 | |
ECG | VCPA-GA-PLS | 49 | 9 | 0.992 | 0.0496 | 0.992 | 0.0498 | 6.53 |
VCPA-GA-SVR | 49 | 8 | 0.995 | 0.0426 | 0.994 | 0.0502 | 6.68 | |
VCPA-GA-ELM | 49 | 7 | 0.996 | 0.0335 | 0.994 | 0.0468 | 7.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, C.; Yang, C.; Liu, Z.; Zhang, R.; Yan, P.; An, T.; Zhao, Y.; Li, Y. Nondestructive Testing and Visualization of Catechin Content in Black Tea Fermentation Using Hyperspectral Imaging. Sensors 2021, 21, 8051. https://doi.org/10.3390/s21238051
Dong C, Yang C, Liu Z, Zhang R, Yan P, An T, Zhao Y, Li Y. Nondestructive Testing and Visualization of Catechin Content in Black Tea Fermentation Using Hyperspectral Imaging. Sensors. 2021; 21(23):8051. https://doi.org/10.3390/s21238051
Chicago/Turabian StyleDong, Chunwang, Chongshan Yang, Zhongyuan Liu, Rentian Zhang, Peng Yan, Ting An, Yan Zhao, and Yang Li. 2021. "Nondestructive Testing and Visualization of Catechin Content in Black Tea Fermentation Using Hyperspectral Imaging" Sensors 21, no. 23: 8051. https://doi.org/10.3390/s21238051
APA StyleDong, C., Yang, C., Liu, Z., Zhang, R., Yan, P., An, T., Zhao, Y., & Li, Y. (2021). Nondestructive Testing and Visualization of Catechin Content in Black Tea Fermentation Using Hyperspectral Imaging. Sensors, 21(23), 8051. https://doi.org/10.3390/s21238051