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Abstract: Catechin is a major reactive substance involved in black tea fermentation. It has a deter-
minant effect on the final quality and taste of made teas. In this study, we applied hyperspectral
technology with the chemometrics method and used different pretreatment and variable filtering
algorithms to reduce noise interference. After reduction of the spectral data dimensions by principal
component analysis (PCA), an optimal prediction model for catechin content was constructed, fol-
lowed by visual analysis of catechin content when fermenting leaves for different periods of time.
The results showed that zero mean normalization (Z-score), multiplicative scatter correction (MSC),
and standard normal variate (SNV) can effectively improve model accuracy; while the shuffled
frog leaping algorithm (SFLA), the variable combination population analysis genetic algorithm
(VCPA-GA), and variable combination population analysis iteratively retaining informative variables
(VCPA-IRIV) can significantly reduce spectral data and enhance the calculation speed of the model.
We found that nonlinear models performed better than linear ones. The prediction accuracy for the
total amount of catechins and for epicatechin gallate (ECG) of the extreme learning machine (ELM),
based on optimal variables, reached 0.989 and 0.994, respectively, and the prediction accuracy for
EGC, C, EC, and EGCG of the content support vector regression (SVR) models reached 0.972, 0.993,
0.990, and 0.994, respectively. The optimal model offers accurate prediction, and visual analysis can
determine the distribution of the catechin content when fermenting leaves for different fermentation
periods. The findings provide significant reference material for intelligent digital assessment of black
tea during processing.

Keywords: congou; fermentation; catechin component content; hyperspectral; quantitative forecast;
visual analysis

1. Introduction

Black tea is known to be the most consumed tea in the world. It is made by com-
plete fermentation and contains large amounts of phenols; it offers a unique taste, and
antioxidant and lipid-lowering effects. Fermentation is a critical process for generating
the splendid color, aroma, and taste of black tea. The cell tissues of fresh tea leaves are
destroyed after rolling treatment, and enzymatic action of polyphenols takes place under
specific temperature, humidity, and oxygen-content conditions. The cytoplasmic inclusions
of the leaves undergo oxidation, polymerization, and condensation reactions, forming
colored substances and special aromatic substances [1]. Catechin is a phenolic active sub-
stance extracted from natural plant material such as tea leaves, and is a major contributor
to tea astringency. Catechin constitutes 70–80% of the total polyphenols in tea, and contains
five catechin monomers (EGC, C, EC, EGCG, and ECG) which can be divided into ester
and non-ester catechins. Ester catechins account for 80% of the total catechins. They exhibit
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stronger astringency and bitterness, while non-ester catechins have weaker astringency
but a refreshing aftertaste [2]. Therefore, changes in catechin content play a determinant
role in the color and taste of brewed tea as well as the grade of black tea.

During fermentation, the inclusions gradually decompose and transform through
processes such as enzymatic action, oxidation and reduction of polyphenols, hydrothermal
action, and acidic action. The chemical reactions are complicated. The most obvious
results on the macro level are the changes to the aroma and color. The aroma gradually
changes from a grassy smell to a cooked smell, and the leaf color turns from green to a
purplish bronze. The catechin content can be measured by HPLC (high performance liquid
chromatography) to assess the fermentation status [3]. However, this method is costly
and requires a lengthy testing period, and therefore does not allow real-time quantitative
prediction. Currently, black tea manufacturers or workshops normally use traditional
methods to determine the fermentation status of black tea. This method of examining the
color and aroma of black tea using the sensory judgment of tea masters is very subjective,
making it hard to ensure the quality of different batches of tea; it would not be compatible
with intelligent digital processing of black tea [4].

Hyperspectral imaging technology can fuse image data with spectral data, detect
geometric spatial distribution information on fermentation, and achieve complete char-
acterization of target items. Hyperspectral imaging is becoming a core approach in the
assessment of agricultural products [5]. However, the amount of hyperspectral informa-
tion acquired is huge, and processing is complicated. Therefore, it is very important to
determine a convenient and stable modeling method to quickly and accurately detect
sample information. Yu-Jie Wang et al. [6] applied a successive projections algorithm (SPA)
to extract the characteristic wavelengths of the hyperspectral data collected for fresh tea
leaves, and established a successive projections algorithm with multiple linear regression
(SPA-MLR) model by combining the SPA with an MLR (multinomial logistic regression)
algorithm. The model can be used for rapid detection of the moisture, total nitrogen,
and crude fiber content in fresh tea leaves, and to determine a quality index score. The
prediction accuracy of the model reached 0.9357, 0.8543, 0.8188, and 0.9168, respectively.
Wei et al. [7] collected hyperspectral images of both the front and back of tea leaves on a con-
veyor belt in the laboratory to simulate the actual production environment. They designed
a logistic regression classifier to identify the spectra of the front and back of fresh tea leaves,
then imported the adjusted spectra into the least square support vector regression (LS-SVR)
model to predict the water content of the tea leaves. Results showed that the accuracy for
predicting the front and back water content reached 0.9500 and 0.9560, respectively, and
the RMSEPs (root-mean-square errors of prediction) were 0.028 and 0.027, respectively. Lin
Yuan et al. [8] regarded 542, 686, and 754 nm as the sensitive bands for anthracnose in tea
plants, based on the hyperspectral data of tea leaves, and they implemented a strategy
of unsupervised classification and an adaptive two-dimensional threshold for disease
recognition. The overall recognition rate reached 98%. Dong Chunwang et al. [9] applied
electrical characteristics detection technology to detect the catechin content of black tea
during fermentation. They compared the abilities of different pretreatment and variable
filtering algorithms to eliminate noise. The prediction accuracy of variable combination
population analysis—iteratively retains informative variables—random forests algorithm
(VCPA-IRIV-RF) model in detecting catechin content reached 0.988.

The above studies show that hyperspectral technology has been widely applied in tea
processing and tea plant characteristics detection. However, no studies on the detection
of the catechin content of black tea during fermentation have been reported. Therefore,
this study was designed with the following objectives: (1) completion of a correspondence
analysis between hyperspectral data of black tea with different fermentation periods and
physicochemical test values of catechin content; (2) discussion of the relationship between
the position of fermenting leaves and the catechin content for different fermentation
periods; (3) comparison of the denoising effect of different pretreatment and variable
screening algorithms and establishment of an optimal model for the prediction of catechin
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levels; (4) visualization of the distribution of catechin content in black tea at different
fermentation levels.

2. Materials and Methods
2.1. Acquisition of Experimental Samples

The variety of the fresh tea leaves used in this study was Tieguanyin. The tenderness
was one bud with one leaf, and we used a batch of tea leaves weighing 15 kg. The samples
were picked at the Tea Research Institute of the Chinese Academy of Agricultural Sciences,
Shengzhou Base. The experiments were performed at the processing building of the Tea
Research Institute. The technique used was the traditional method for making Congou
black tea: fresh tea leaves → withering → rolling → fermentation → drying [10]. The
fermentation device was a manual climatic box. The fermentation temperature was set at
30 ◦C, relative humidity was ≥90%, and the fermentation time was 5 h, to make sure the
samples underwent all the fermentation levels (mild fermentation, moderate fermentation,
and excessive fermentation) [11]. The acquisition of hyperspectral data on the samples was
performed concurrently with the sample fixing [12]. An ultra-low-temperature freezer was
used as the fixing machine. In order to investigate the changes in catechin content of stacked
fermenting leaves at different positions and to improve the generalization performance
of the model, we performed layer-based processing on the stacked leaves. The fermented
leaves were divided into three layers, each with a length and width of 0.5 m × 0.3 m and a
thickness of 5 cm. The total number of tea samples was 18.

2.2. Detection of Catechin Content

Grinding pretreatment was performed on the freeze-dried samples. Standard catechin
components were purchased from Sigma-Aldrich (St. Louis, MO, USA). The specific
content was determined as per the standard “Determination of Total Polyphenols and catechins
content in Tea” (GB/T8313-2008).

2.3. Specific Operations for Component Detection

The reaction liquid consisted of 70% methanol, 2% ethanoic acid mobile phase (phase
A), and acetonitrile mobile phase (phase B). To prepare the 2% ethanoic acid mobile phase
(phase A), we used purified water with 40 mL of ethanoic acid to make a constant volume of
2 L of liquid, shook it, filtered it with a sand core funnel, and applied ultrasonic debubbling
for 15 min. To prepare the acetonitrile mobile phase (phase B), we simply applied ultrasonic
debubbling for 15 min to 500 mL of purified acetonitrile. To prepare the mother liquor,
we ground the sample evenly, put a 0.2 g sample into a 10 mL centrifuge tube, mixed it
with 5 mL of 70% methanol solution, and placed it in a 70 ◦C water bath. After soaking
it for 10 min, we cooled it to room temperature, centrifuged it for 10 min at a speed of
3500 r/min, then saved the centrifuged supernatant in a volumetric flask. The residue
was extracted repeatedly according to the above procedures to make a 10 mL extraction
solution, and then filtered with a 0.45 um membrane for standby application [13].

A Shimadzu LC-20AD HPLC (Shimadzu Co., Kyoto, Japan) equipped with a 20AV
UV–Vis (ultraviolet–visible) detector was used. The chromatographic column settings
were: C18-BDS column (Hangzhou Coulomb Technology Co., Ltd., Hangzhou, China)
(4.6 mm × 200 mm); sample size: 10 uL; column temperature: 35 ◦C; column temperature
limit: 37 ◦C; flow rate: 10 mL/min; gradient elution: mobile phase A was reduced from
93.5% to 85% at 0–16 min and 85% to 75% at 16–25 min, then increased from 75% to 93.5% at
25–25.5 min, and became balanced for 5 min at 25.5–30 min; mobile phase B was increased
from 6.5% to 15% at 0–16 min and 15% to 25% at 16–25 min, then reduced from 25% to 6.5%
at 25–25.5 min, and became balanced for 5 min at 25.5–30 min [14].
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The standard sample required calibration after every 10 samples were tested, and the
catechin content required three repeated tests. The specific content was calculated with the
following formula:

catechin content (%) = (A ∗ V ∗ C)/(A1 ∗m ∗ 103 ∗m1) ∗ 100 (1)

where A is the peak area of the test-liquid sample, V is the volume of the test liquid (10 mL),
C is the catechin concentration in the sample (mg/mL), A1 is the peak area of a standard
sample, m is the dry-matter content in the sample, and m1 is the mass of the sample.

2.4. Acquisition of Hyperspectral Data

The hyperspectral data acquisition system consisted of a hyperspectral imager (Im-
Spector V10E, Spectral Imaging Oy Ltd., Oulu, Finland), a high-precision conveyor plat-
form, and a set of 150 W optical fiber halogen lamps which were fixed in a camera obscura
with a 45-degree distribution. Before data acquisition, the machine was preheated for
30 min; we then set the resolution at 2.8 nm, the sampling interval at 0.67 nm, the exposure
time at 4.2 ms, the sample conveyor speed at 1.24 mm/s, the spacing between the sample
and the lens at 22.6 cm, and the light intensity at 103 cd. After acquisition, we carried
out black and white plate correction again, following the methods of Yang Chongshan
et al. [15]. The process of data acquisition is shown in Figure 1.
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Figure 1. Hyperspectral data acquisition system flowchart.

During data acquisition, the samples were evenly placed in a 17 cm× 8 cm rectangular
glass frame with the surface of the tea leaves flush with the top of the glass frame. Tea
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leaves at fermentation time 0 were used as the initial sample. The sampling interval
was 1 h, with one sampling for each layer (upper, middle, and lower). The spectral data
acquisition was performed using ENVI 5.3 (64-bit), and the specific process was as follows:
a rectangular region formed by 200 × 200 pixels was used as the region of interest (ROI),
and at each moment, hyperspectral data were collected for the upper, middle, and lower
layers. We selected 10 symmetrically distributed ROIs for each hyperspectral image. The
average of the spectra in each ROI were used as sample spectra for that moment, and each
moment contained 30 spectra, for a total of 180 spectra [16].

2.5. Data Treatment and Analysis
2.5.1. Data Standardization

During data acquisition, machine noise, an uneven sample surface, and the external
environment may lead to deviations in the spectral data. Therefore, in order to reduce
interference and improve the prediction accuracy of the model, we pretreated the original
spectra using seven algorithms: Smooth, SNV, Multiplicative scatter correction (MSC),
2 Derivative (2 De), Center, Center and Zero-mean normalization (Z-Score), and Min-Max
normalization (Min-Max).

2.5.2. Variable Screening and Dimension Reduction

Various bands of spectral data were apparent after acquisition. Before establishing
a specific component prediction model, it was necessary to use different algorithms to
select the spectral bands closely related to specific components, in order to eliminate
surplus data and improve the prediction accuracy and calculation speed of the model.
Therefore, we used the seven above-mentioned variable screening algorithms to extract
the characteristic wavelengths. After variable screening, PCA was conducted to perform
quadratic dimensional reduction compression on the selected data and to optimize the
model’s accuracy [17]. The characteristic wavelengths screened for different endoplasmic
components are shown in Table 1.

Table 1. The Characteristic wavelengths screened by different variable screening methods.

Algorithm Endoplasmic Composition Characteristic Wavelengths

SPA The total amount of catechins 406, 457, 505, 536, 547, 566, 580, 625, 650,
731, 776, 891, 942, and 947 nm

VCPA-GA EGC

436, 457, 492, 513, 554, 579, 625, 674, 683,
694, 705, 727, 729, 730, 743, 757, 766, 767,
832, 835, 838, 846, 847, 886, 893, 897, 901,

914, 917, 938, 952, and 953 nm

VCPA-IRIV C

417, 418, 435, 441, 442, 486, 507, 526, 548,
556, 614, 615, 623, 679, 696, 707, 786, 789,

797, 841, 887, 904, 905, 927, 928, 941,
and 942 nm

VCPA-IRIV EC
436, 441, 447, 497, 499, 557, 558, 607, 627,
638, 656, 667, 683, 689, 696, 786, 883, 886,

887, 901, 904, 955, 956, and 957 nm

VCPA-IRIV EGCG

447, 453, 455, 496, 503, 505, 526, 527, 587,
589, 606, 627, 628, 635, 637, 646, 732, 735,
796, 797, 807, 828, 836, 838, 839, 912, 915,

927, and 948 nm

VCPA-IRIV ECG

447, 453, 455, 496, 503, 505, 526, 527, 587,
589, 606, 627, 628, 635, 637, 646, 732, 735,

796, 797, 807, 828, 836, 838, 839, 912,
915,927, and 948 nm
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2.5.3. Modeling Algorithms and Evaluation Criteria

The optimal pretreatment algorithm and optimal variables of the spectra were deter-
mined based on the sensitivity degree of the specific components, and a prediction model
for catechin content was established using PLS, ELM, and SVR models. The input of the
principal components of the models was determined using minimal root-mean-square
error cross-validation (RMSECV). The evaluation indices included root-mean-square error
of prediction (RMSEP), correlation coefficient of calibration set (Rc), correlation coefficient
of predication set (Rp), and relative percentage deviation (RPD) [17]. Usually, the closer
the RMSECV and RMSEP values, the better the generalization performance of a model.
RPD is the ratio of standard deviation to RMSEP, which reflects the final performance of
the model. When RPD is within a range of 1.4–1.8, the model can make a rough prediction
for the sample; when RPD exceeds 2, the prediction of the model is accurate [18]. All data
processing was completed in Origin 2018, ENVI 5.3, and MATLAB 2019a.

3. Results and Analyses
3.1. Change Trends of Catechin Content during Different Fermentation Periods

Figure 2 is a line chart of the physicochemical test results for catechin content in black
tea during processing. As shown, polyphenols (mainly consisting of catechins) participated
in the enzymatic oxidation and formed high polymers such as tea pigments. The reaction
gradually changed from strong to moderate as fermentation continued. Thus, the quantity
of catechins dropped dramatically over 0–2 h and then continued to decrease more slowly
over 2–5 h [19]. Specifically, the EC component of the catechin content decreased by 96.28%,
indicating that EC was the major component involved in the chemical reaction during
fermentation. In contrast, the EGC content decreased by 4.5%, indicating that EGC was
only slightly involved in the chemical reaction during the fermentation of black tea.
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3.2. Comparison of Catechin Content at Different Periods and Different Positions of
Fermenting Leaves

Figure 3 shows the changes in the catechin content in stacked, fermented black tea
leaves at different fermentation levels (mild, moderate, and excessive) and positions (upper,
middle, and lower). As the figure demonstrates, for the same fermentation position, the
catechin content decreased as fermentation progressed, but the rate of decrease was differ-



Sensors 2021, 21, 8051 7 of 13

ent in different fermentation layers. This indicated that various chemical reactions were
taking place during fermentation apart from enzymatic oxidation. At 2 h of fermentation,
the catechin content was higher in the middle layer of fermenting leaves. The reason might
be the low reaction rate of the middle layer, due to its lower oxygen content compared
with the upper layer and its lower temperature compared with the lower layer. At 3–5 h,
the catechin content was higher in the lower layer of fermenting leaves, as the enzymatic
oxidation was greatly affected by the oxygen content.

Figure 3. Changes in catechin content in the fermented leaves of stacked black tea at different fermentation levels and
positions. ((a–d) are the changes in the content of catechin components at different positions during the fermentation of
black tea for 2, 3, 4, and 5 hours, respectively).

3.3. Selection of Optimal Pretreatment Algorithms

Figure 4a shows the average hyperspectral curves for different tea fermentation peri-
ods. The endoplasmic components of black tea changed significantly during fermentation
due to the effects of various chemical reactions. In the 700–957 nm band, the average
spectra at different moments presented significant differences, indicating that different
endoplasmic component contents could lead to different spectral absorbances. Hence,
a prediction model can be built based on the spectral information. Figure 4b shows the
original hyperspectral data, which include all the information on the black tea during
fermentation as well as some of the sources of noise. Before modeling, the original data
were denoised using different algorithms to improve the model accuracy. The pretreated
spectral curves are shown in Figure 4c–h. We used a PLS model for the selection of different
pretreatment methods, and the optimal method was determined by the Rp value of the
models. The results are shown in Table 2.
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((a) is the average spectrum of black tea at different fermentation times; (b) is the original spectrum of black tea at different
fermentation moments; (c–i) are the pre-processed spectra of the original spectra using 2 De, Center, Min-Max, MSC,
Smooth, SNV, and Zscore algorithms, respectively).

Table 2. Optimal results of pretreatment methods that affect catechin content, in the PLS model.

Physical and Chemical
Composition

Pretreatment Method PCs
Calibration Set Prediction Set

Rc RMSECV Rp RMSEP

Total catechins Z-Score 5 0.918 0.502 0.911 0.592

EGC MSC 10 0.810 0.0095 0.769 0.0102

C Z-Score 9 0.889 0.0301 0.883 0.0398

EC SNV 7 0.903 0.0218 0.891 0.0311

EGCG Z-Score 9 0.928 0.116 0.920 0.151

ECG SNV 9 0.929 0.117 0.923 0.140

3.4. Selection of Optimal Variable Screening Algorithms

We used a KS algorithm to divide the 162 samples into a calibration set and a prediction
set, at a proportion of 3:1 [20]. Next, we imported the data sets into different screening
algorithms to remove the surplus data, and determined the optimal variable screening
method for catechin content by combining different methods with PLS model prediction.
The results are shown in Table 3, revealing that the number of variables for the total
catechins (EGC, C, EC, EGCG, and ECG) were reduced to 14, 32, 27, 24, 29, and 49,
respectively. The surplus data elimination rate reached 91.20%, indicating a significant
improvement in the prediction accuracy of the model.

The SPA algorithm was used to compare the vector magnitude based on vector
projection analysis. The wavelength with the largest projection size was used as the
candidate wavelength, and the selected combination of variables contained the minimum
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surplus information. Compared with the full-waveband PLS model, the SFLA-PLS model
for total catechins was effective in increasing the Rc and Rp from 0.968 and 0.961 to 0.977
and 0.979, respectively. VCPA-GA adopted the binary matrix sampling method combined
with a natural evolutionary process, and determined the number of wavelengths to be
retained according to EDF to reduce the space of the variables [21]. Compared with the full-
waveband PLS model, the VCPA-GA-PLS model for EGC content was able to increase the Rc
and Rp from 0.810 and 0.769 to 0.946 and 0.956, respectively. The VCPA-GA-PLS model for
ECG content increased the Rc and Rp from 0.989 and 0.983 to 0.996 and 0.994, respectively.
Based on the concept of cluster classification, the VCPA-IRIV model divided the data sets
into strong- and weak-information data, as well as interference information variables and
uninformative variables. After multiple iterative computations, only strong- and weak-
information variables were retained, to reduce the effect of interference information [22].
Compared with the full-waveband PLS model, the VCPA-IRIV model for the C content
increased the Rc and Rp from 0.989 and 0.983 to 0.996 and 0.993; the VCPA-IRIV model
for EC content increased the Rc and Rp from 0.983 and 0.971 to 0.996 and 0.990; and the
VCPA-IRIV model for EGCG content increased the Rc and Rp from 0.988 and 0.980 to 0.996
and 0.994. Therefore, the quantitative prediction model for catechin content prediction was
effective and can be used for content detection during actual tea production.

Table 3. Catechin content prediction results from different models.

Catechin
Component Methods Variable

Number
PCs

Calibration Set Prediction Set
Rc RMSECV Rp RMSEP RPD

Total catechins

SPA-PLS 14 6 0.977 0.268 0.979 0.239 4.46

SPA-SVR 14 8 0.994 0.142 0.987 0.193 5.92

SPA-ELM 14 7 0.994 0.136 0.989 0.175 6.50

EGC
VCPA-GA-PLS 32 8 0.946 0.0053 0.956 0.0050 2.03

VCPA-GA-SVR 32 8 0.983 0.0030 0.972 0.0041 3.78

VCPA-GA-ELM 32 9 0.954 0.0048 0.926 0.0059 2.66

C
VCPA-IRIV-PLS 27 10 0.993 0.0076 0.991 0.0087 6.11

VCPA-IRIV-SVR 27 7 0.996 0.0060 0.993 0.0082 6.72

VCPA-IRIV-ELM 27 9 0.996 0.0056 0.992 0.0086 6.37

EC
VCPA-IRIV-PLS 24 9 0.984 0.0113 0.987 0.0086 4.68

VCPA-IRIV-SVR 24 7 0.996 0.0059 0.990 0.0075 5.69

VCPA-IRIV-ELM 24 8 0.995 0.0064 0.988 0.0081 5.25

EGCG
VCPA-IRIV-PLS 29 10 0.991 0.0953 0.991 0.0868 6.24

VCPA-IRIV-SVR 29 5 0.996 0.0684 0.994 0.0793 7.33

VCPA-IRIV-ELM 29 7 0.995 0.0701 0.993 0.0825 7.00

ECG
VCPA-GA-PLS 49 9 0.992 0.0496 0.992 0.0498 6.53

VCPA-GA-SVR 49 8 0.995 0.0426 0.994 0.0502 6.68

VCPA-GA-ELM 49 7 0.996 0.0335 0.994 0.0468 7.29

3.5. Selection of Optimal Models

After pretreatment of the obtained spectral data and elimination of noise, we employed
different variable screening methods to select the characteristic wavelengths sensitive to
specific components. Through PCA dimension reduction and with the number of principle
components as the input, we established a linear PLS model and nonlinear ELM and SVR
models [23]. ELM is a feedforward neural network learning method, which artificially
gives a hidden layer node weight without the need for updating. This method is suitable
for supervised and unsupervised learning to analyze the effect of different PCs on model
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performance [24]. The prediction performance is shown in Figure 5a,k. The SVR model
constructed a hyperplane or a set of hyperplanes in high-dimensional or finite space for
the data sets, thus realizing optimal segmentation by calculating the distance from the
hyperplane to the training data point and making multiple-factor analysis easier. The SVR
model uses an RBF radial basis function as the kernel function. Like any of the principal
component input numbers, the penalty coefficient c and the kernel parameter g influence
the accuracy of the model, so we used the verification function tunelsssvm for optimization.
The results of optimization are shown in Figure 5c,e,g,i [25].

 

 
 

 

 
Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors 

Figure 5l. 

 

Figure 5. Optimal model optimization results and prediction effects of the content of catechin components. ((a,i) are the 

prediction effects of the total catechin model and the EGCG model, respectively; (c,e,g,k) are the internal parameter opti-

mization diagrams of EGC, C, EC, and ECG models, respectively; (b,d,f,h,j,l) are the predicted scatter plots of the total 

catechins, EGC, C, EC and ECG models, respectively). 

1.  

Figure 5. Optimal model optimization results and prediction effects of the content of catechin components. ((a,i) are
the prediction effects of the total catechin model and the EGCG model, respectively; (c,e,g,k) are the internal parameter
optimization diagrams of EGC, C, EC, and ECG models, respectively; (b,d,f,h,j,l) are the predicted scatter plots of the total
catechins, EGC, C, EC and ECG models, respectively).

Figure 5a shows the prediction effect of the total catechin model, with the graph
visualizing the relationship between the true value and the predicted value in the model
prediction set. When PCs = 7, the model achieved the best prediction accuracy, and the Rp,
RMSEP, and RPD values of the prediction set were 0.989, 0.175, and 6.5, respectively. The
distribution scatter plot is shown in Figure 5b [26–28]. Figure 5c shows the optimization
effect of the EGC model. The model had the best prediction accuracy when c = 2.83,
g = 0.5, and PCs = 8. The Rp, RMSEP, and RPD values of the prediction set were 0.972,
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0.0041, and 3.78, respectively. The distribution scatter plot is shown in Figure 5d. Figure 5e
illustrates the optimization effect of the C model. The model had the best prediction
accuracy when c = 16, g = 0.063, and PCs = 7. The Rp, RMSEP, and RPD values of the
prediction set were 0.993, 0.0082, and 6.72, respectively. The distribution scatter plot is
shown in Figure 5f. Figure 5g shows the optimization effect of the EC model. The model
had the best prediction accuracy when c = 4, g = 0.35, and PCs = 7. The Rp, RMSEP, and
RPD values of the prediction set were 0.990, 0.0075, and 5.69, respectively. The distribution
scatter plot is shown in Figure 5h. Figure 5i displays the prediction effect of the EGCG
model, which had the best prediction accuracy when c = 32, g = 0.63, and PCs = 5. The Rp,
RMSEP, and RPD values of the prediction set were 0.994, 0.079, and 7.33, respectively. The
distribution scatter plot is shown in Figure 5j. Figure 5k illustrates the optimization effect
of the ECG model. This model had the best prediction accuracy when PCs = 7. The Rp,
RMSEP, and RPD values of the prediction set were 0.994, 0.047, and 7.29, respectively. The
distribution scatter plot is shown in Figure 5l.

3.6. Visualized Analysis of Catechin Content

The technological process of the fermentation experiment was controlled by pro-
fessional tea masters. They divided the fermentation levels into three types according
to the tenderness, withering, rolling, color, and aroma of the tea leaves. The first type
was mild fermentation, which occurred at 0–3 h; the second was moderate fermentation,
which occurred at 4 h; and the last was excessive fermentation, which occurred at 5 h [29].
The visual analysis was carried out using MATLAB software. During visual analysis,
we selected the hyperspectral image for a 200 × 200 pixel region for each fermentation
level, carried out binary processing on the wavelengths where the background information
was obviously different from that of the ROI, and set the value of the background pixel
points to zero. We then transformed the hyperspectral data into two-dimensional data,
removed the previous and following noise wavelengths, denoised the primary variables,
input the data to the ELM model for prediction, and finally, colored the data points to
achieve visualization of the catechin content, the final visualization is shown in Figure 6.
The change in the EGC content was not obvious during fermentation, so the visual analysis
focused only on the distribution of the total catechin content (C, EC, EGCG, and ECG) at
different fermentation levels.
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4. Conclusions

(1) Physicochemical tests were performed on black tea samples with different fer-
mentation periods, and the change trends of the various catechin contents were then
analyzed. The results showed that all the contents except EGC exhibited a significant
decrease (>72.06%) as enzymatic oxidation progressed during fermentation. The chemical
reaction in black tea was complicated, and the catechin content at the same position but
at different times showed different rates of decrease, due to other reactions. The catechin
content of the middle fermenting layer had a slow conversion rate 2 h after fermentation
due to insufficient oxygen and low temperature. The lower fermenting layer also had slow
enzymatic oxidation because of lower oxygen content.

(2) Preliminary experiments proved that when the content of endoplasmic components
in the black tea fermentation process was less than 0.01% and did not change significantly, it
was impossible to accurately predict the endoplasmic components, even using a variety of
modeling methods. The prediction accuracy of the proposed model improved significantly
after denoising the original hyperspectral data using different pretreatment and variable
screening methods. Nonlinear ELM and SVR models offered higher prediction accuracy
than a linear PLS model. Due to multiple chemical reactions in fermenting black tea, as well
as other factors, the catechin content shows inconsistent change trends; hence, nonlinear
models are more accurate than linear ones for prediction.

(3) The prediction results of the models we tested showed that only the EGC model
had a relatively low accuracy of 0.972. The optimal model prediction rates for total
catechin contents (Total catechins, C, EC, EGCG, and ECG) were quite high at 0.989, 0.993,
0.990, 0.994, and 0.994, respectively, showing excellent prediction performance. After
pretreatment, variable screening, and PCA dimension reduction on the original spectra,
visual distribution of the catechin content of black tea at different fermentation levels was
realized using the ELM model. We suggest that these results can provide a theoretical basis
for intuitive and effective digital evaluation of the fermentation degree of black tea.

Author Contributions: C.D.: conceptualization and funding acquisition; C.Y.: writing and formal
analysis; Z.L.: data validation; R.Z.: some experiments; P.Y.: validation and software; T.A.: data
curation; Y.Z.: conceptualization and visualization; Y.L.: project administration and methodology.
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