The Effects of Over-Ground Robot-Assisted Gait Training for Children with Ataxic Cerebral Palsy: A Case Report
Abstract
:1. Introduction
2. Case Description and Methods
2.1. Case Description
2.1.1. Case 1
2.1.2. Case 2
2.2. Methods
2.2.1. Training Program
2.2.2. Outcome Measures
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Howard, J.; Soo, B.; Graham, H.K.; Boyd, R.N.; Reid, S.; Lanigan, A.; Wolfe, R.; Reddihough, D.S. Cerebral palsy in Victoria: Motor types, topography and gross motor function. J. Paediatr. Child Health 2005, 41, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Andersen, G.L.; Romundstad, P.; Cruz, J.D.L.; Himmelmann, K.; Sellier, E.; Cans, C.; Kurinczuk, J.J.; Vik, T. Cerebral palsy among children born moderately preterm or at moderately low birthweight between 1980 and 1998: A European register-based study. Dev. Med. Child Neurol. 2011, 53, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Sanger, T.D.; Delgado, M.R.; Gaebler-Spira, D.; Hallett, M.; Mink, J.W. Classification and definition of disorders causing hypertonia in childhood. Pediatrics 2003, 111, e89–e97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckung, E.; Hagberg, G.; Uldall, P.; Cans, C. Probability of walking in children with cerebral palsy in Europe. Pediatrics 2008, 121, e187–e192. [Google Scholar] [CrossRef] [Green Version]
- Lefmann, S.; Russo, R.; Hillier, S. The effectiveness of robotic-assisted gait training for paediatric gait disorders: Systematic review. J. Neuroeng. Rehabil. 2017, 14, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Esquenazi, A.; Talaty, M. Robotics for lower limb rehabilitation. Phys. Med. Rehabil. Clin. 2019, 30, 385–397. [Google Scholar] [CrossRef]
- Israel, J.F.; Campbell, D.D.; Kahn, J.H.; Hornby, T.G. Metabolic costs and muscle activity patterns during robotic-and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Phys. Ther. 2006, 86, 1466–1478. [Google Scholar] [CrossRef] [Green Version]
- Wall, A.; Borg, J.; Palmcrantz, S. Clinical application of the Hybrid Assistive Limb (HAL) for gait training—A systematic review. Front. Syst. Neurosci. 2015, 9, 48. [Google Scholar] [CrossRef] [Green Version]
- Kressler, J.; Thomas, C.K.; Field-Fote, E.C.; Sanchez, J.; Widerström-Noga, E.; Cilien, D.C.; Gant, K.; Ginnety, K.; Gonzalez, H.; Martinez, A. Understanding therapeutic benefits of overground bionic ambulation: Exploratory case series in persons with chronic, complete spinal cord injury. Arch. Phys. Med. Rehabil. 2014, 95, 1878–1887.e1874. [Google Scholar] [CrossRef]
- Nilsson, A.; Vreede, K.S.; Häglund, V.; Kawamoto, H.; Sankai, Y.; Borg, J. Gait training early after stroke with a new exoskeleton–the hybrid assistive limb: A study of safety and feasibility. J. Neuroeng. Rehabil. 2014, 11, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Alias, N.A.; Huq, M.S.; Ibrahim, B.; Omar, R. The efficacy of state of the art overground gait rehabilitation robotics: A bird’s eye view. Procedia Comput. Sci. 2017, 105, 365–370. [Google Scholar] [CrossRef]
- Kim, S.K.; Park, D.; Yoo, B.; Shim, D.; Choi, J.-O.; Choi, T.Y.; Park, E.S. Overground Robot-Assisted Gait Training for Pediatric Cerebral Palsy. Sensors 2021, 21, 2087. [Google Scholar] [CrossRef] [PubMed]
- Oeffinger, D.; Bagley, A.; Rogers, S.; Gorton, G.; Kryscio, R.; Abel, M.; Damiano, D.; Barnes, D.; Tylkowski, C. Outcome tools used for ambulatory children with cerebral palsy: Responsiveness and minimum clinically important differences. Dev. Med. Child Neurol. 2008, 50, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Russell, D.J.; Rosenbaum, P.L.; Cadman, D.T.; Gowland, C.; Hardy, S.; Jarvis, S. The gross motor function measure: A means to evaluate the effects of physical therapy. Dev. Med. Child Neurol. 1989, 31, 341–352. [Google Scholar] [CrossRef]
- Pavao, S.L.; Barbosa, K.A.F.; de Oliveira Sato, T.; Rocha, N.A.C.F. Functional balance and gross motor function in children with cerebral palsy. Res. Dev. Disabil. 2014, 35, 2278–2283. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, D.; Birmingham, T. Validity and reliability of a pediatric reach test. Pediatric Phys. Ther. 2003, 15, 84–92. [Google Scholar] [CrossRef]
- Randall, K.E.; Bartlett, D.J.; McCoy, S.W. Measuring postural stability in young children with cerebral palsy: A comparison of 2 instruments. Pediatric Phys. Ther. 2014, 26, 332–337. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar]
- Nicolini-Panisson, R.D.A.; Donadio, M.V.F. Timed “Up & Go” test in children and adolescents. Rev. Paul. Pediatr. 2013, 31, 377–383. [Google Scholar] [PubMed]
- Hassani, S.; Krzak, J.J.; Johnson, B.; Flanagan, A.; Gorton, G., III; Bagley, A.; Õunpuu, S.; Romness, M.; Tylkowski, C.; Oeffinger, D. One-Minute Walk and modified Timed Up and Go tests in children with cerebral palsy: Performance and minimum clinically important differences. Dev. Med. Child Neurol. 2014, 56, 482–489. [Google Scholar] [CrossRef]
- Martakis, K.; Stark, C.; Rehberg, M.; Semler, O.; Duran, I.; Schoenau, E. One-minute walk test in children with cerebral palsy GMFCS level 1 and 2: Reference values to identify therapeutic effects after rehabilitation. Dev. Neurorehabilit. 2020, 23, 201–209. [Google Scholar] [CrossRef]
- Chen, C.-L.; Shen, I.-H.; Chen, C.-Y.; Wu, C.-Y.; Liu, W.-Y.; Chung, C.-Y. Validity, responsiveness, minimal detectable change, and minimal clinically important change of Pediatric Balance Scale in children with cerebral palsy. Res. Dev. Disabil. 2013, 34, 916–922. [Google Scholar] [CrossRef]
- Matsuda, M.; Iwasaki, N.; Mataki, Y.; Mutsuzaki, H.; Yoshikawa, K.; Takahashi, K.; Enomoto, K.; Sano, K.; Kubota, A.; Nakayama, T. Robot-assisted training using Hybrid Assistive Limb® for cerebral palsy. Brain Dev. 2018, 40, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, S.; Mutsuzaki, H.; Mataki, Y.; Endo, Y.; Kamada, H.; Yamazaki, M. Improvement and sustainability of walking ability with hybrid assistive limb training in a patient with cerebral palsy after puberty: A case report. J. Phys. Ther. Sci. 2019, 31, 633–637. [Google Scholar] [CrossRef] [PubMed]
- Ueno, T.; Watanabe, H.; Kawamoto, H.; Shimizu, Y.; Endo, A.; Shimizu, T.; Ishikawa, K.; Kadone, H.; Ohto, T.; Kamada, H. Feasibility and safety of Robot Suit HAL treatment for adolescents and adults with cerebral palsy. J. Clin. Neurosci. 2019, 68, 101–104. [Google Scholar] [CrossRef]
- Kawasaki, S.; Ohata, K.; Yoshida, T.; Yokoyama, A.; Yamada, S. Gait improvements by assisting hip movements with the robot in children with cerebral palsy: A pilot randomized controlled trial. J. Neuroeng. Rehabil. 2020, 17, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Tsukahara, A.; Yoshida, K.; Matsushima, A.; Ajima, K.; Kuroda, C.; Mizukami, N.; Hashimoto, M. Evaluation of walking smoothness using wearable robotic system curara® for spinocerebellar degeneration patients. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; pp. 1494–1499. [Google Scholar]
- Tsukahara, A.; Yoshida, K.; Matsushima, A.; Ajima, K.; Kuroda, C.; Mizukami, N.; Hashimoto, M. Effects of gait support in patients with spinocerebellar degeneration by a wearable robot based on synchronization control. J. Neuroeng. Rehabil. 2018, 15, 1–12. [Google Scholar] [CrossRef]
- Matsushima, A.; Maruyama, Y.; Mizukami, N.; Tetsuya, M.; Hashimoto, M.; Yoshida, K. Gait training with a wearable curara® robot for cerebellar ataxia: A single-arm study. Biomed. Eng. Online 2021, 20, 90. [Google Scholar] [CrossRef]
- Kim, S.-H.; Han, J.-Y.; Song, M.-K.; Choi, I.-S.; Park, H.-K. Effectiveness of Robotic Exoskeleton-Assisted Gait Training in Spinocerebellar Ataxia: A Case Report. Sensors 2021, 21, 4874. [Google Scholar] [CrossRef]
- Wallard, L.; Dietrich, G.; Kerlirzin, Y.; Bredin, J. Robotic-assisted gait training improves walking abilities in diplegic children with cerebral palsy. Eur. J. Paediatr. Neurol. 2017, 21, 557–564. [Google Scholar] [CrossRef]
- Borggraefe, I.; Schaefer, J.S.; Klaiber, M.; Dabrowski, E.; Ammann-Reiffer, C.; Knecht, B.; Berweck, S.; Heinen, F.; Meyer-Heim, A. Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Eur. J. Paediatr. Neurol. 2010, 14, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Meyer-Heim, A.; Ammann-Reiffer, C.; Schmartz, A.; Schaefer, J.; Sennhauser, F.H.; Heinen, F.; Knecht, B.; Dabrowski, E.; Borggraefe, I. Improvement of walking abilities after robotic-assisted locomotion training in children with cerebral palsy. Arch. Dis. Child. 2009, 94, 615–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
GMFM-88 (%) * | |||||
---|---|---|---|---|---|
C | D | E | Total | ||
3rd admission (8 July 2019) | Pre | 97.62 | 79.49 | 41.67 | 83.76 |
Post | 97.62 | 84.62 | 55.56 | 87.56 | |
4th admission (21 February 2020) | Pre | 100 | 79.49 | 59.72 | 87.84 |
Post | 100 | 79.49 | 73.61 | 90.62 | |
5th admission (12 January 2021) | Pre | 100 | 79.49 | 73.61 | 90.62 |
Post | 100 | 79.49 | 77.78 | 91.45 |
GMFM-88 (%) * | |||||
---|---|---|---|---|---|
C | D | E | Total | ||
9th admission (14 August 2020) | Pre | 92.86 | 79.49 | 58.33 | 86.14 |
Post | 92.86 | 79.49 | 59.72 | 86.41 | |
10th admission (7 December 2020) | Pre | 92.86 | 79.49 | 62.50 | 86.97 |
Post | 92.86 | 79.49 | 62.50 | 86.97 | |
11th admission (8 March 2021) | Pre | 97.62 | 87.18 | 50.00 | 86.96 |
Post | 97.62 | 87.18 | 50.00 | 86.96 |
GMFM-88 (%) * | |||||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | Total | ||
case 1 | Pre | 100 | 100 | 100 | 79.49 | 77.78 | 91.45 |
Post | 100 | 100 | 100 | 92.31 | 80.56 | 94.57 | |
case 2 | Pre | 100 | 100 | 97.62 | 87.18 | 51.39 | 87.24 |
Post | 100 | 100 | 100 | 89.74 | 54.17 | 88.78 |
Case 1 | Case 2 | ||
---|---|---|---|
PBS | Pre | 35 | 35 |
Post | 45 | 42 | |
PRT in standing | |||
Forward reach (cm) | Pre | 21 | 13 |
Post | 35 | 25 | |
Right reach (cm) | Pre | 8 | 8 |
Post | 24 | 15 | |
Left reach (cm) | Pre | 10 | 12 |
Post | 26 | 14 | |
PRT in sitting | |||
Forward reach (cm) | Pre | 36 | 21 |
Post | 42 | 34 | |
Right reach (cm) | Pre | 16 | 13 |
Post | 32 | 20 | |
Left reach (cm) | Pre | 21 | 17 |
Post | 35 | 20 | |
PRT total (cm) | Pre | 112 | 84 |
Post | 194 | 128 |
Case 1 | Case 2 | ||
---|---|---|---|
1MWT (meter) | Pre | 46.16 | 10.10 |
Post | 61.06 | 21.30 | |
TUG test (s) | Pre | 25.42 | 39.95 |
Post | 19.58 | 24.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, M.; Ahn, J.H.; Park, E.S. The Effects of Over-Ground Robot-Assisted Gait Training for Children with Ataxic Cerebral Palsy: A Case Report. Sensors 2021, 21, 7875. https://doi.org/10.3390/s21237875
Yoo M, Ahn JH, Park ES. The Effects of Over-Ground Robot-Assisted Gait Training for Children with Ataxic Cerebral Palsy: A Case Report. Sensors. 2021; 21(23):7875. https://doi.org/10.3390/s21237875
Chicago/Turabian StyleYoo, Myungeun, Jeong Hyeon Ahn, and Eun Sook Park. 2021. "The Effects of Over-Ground Robot-Assisted Gait Training for Children with Ataxic Cerebral Palsy: A Case Report" Sensors 21, no. 23: 7875. https://doi.org/10.3390/s21237875
APA StyleYoo, M., Ahn, J. H., & Park, E. S. (2021). The Effects of Over-Ground Robot-Assisted Gait Training for Children with Ataxic Cerebral Palsy: A Case Report. Sensors, 21(23), 7875. https://doi.org/10.3390/s21237875