Research of Distorted Vehicle Magnetic Signatures Recognitions, for Length Estimation in Real Traffic Conditions
Abstract
:1. Introduction
2. Relate Works
3. Problems
3.1. Distorted Signatures Identification by Accelerometer Signal
3.2. Distorted Signature Detection Based on Feature of Magnetic Signals
4. Method and Materials
4.1. Speed Estimation Technique for Distorted Signatures
4.2. Vehicle Lenght Estitmation
- Threshold-based method from signature magnitude [24];
- Peak detection method from derivative of magnitude.
- Convert the time-based signature to distance-based.Time array is converted by 2 cm discrete samples, using speed value from cross-correlation method.
- Calculate the 1st order derivative of the distance-based signature. The derivative calculation step is 0.8 m.
- Locate the first and the last significant peaks, which represents front and rear of the vehicle.
- Estimate the gap between the first/last peaks vehicle length.
5. Result and Accuracy
5.1. Vehicle Length Estimation Results with the First Dataset
5.2. Vehicle Length Estimation Errors with the Second Dataset
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- U. D. of Transportation. “Traffic monitoring guide” Federal Highway Administration (FHWA). Tech. Rep. 2016, 1–473. Available online: https://www.fhwa.dot.gov/policyinformation/tmguide/tmg_fhwa_pl_17_003.pdf (accessed on 20 January 2020).
- Bernas, M.; Płaczek, B.; Korski, W.; Loska, P.; Smyła, J.; Szymała, P. A Survey and Comparison of Low-Cost Sensing Technologies for Road Traffic Monitoring. Sensors 2018, 18, 3243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markevicius, V.; Navikas, D.; Idźkowski, A.; Valinevicius, A.; Zilys, M.; Janeliauskas, A.; Walendziuk, W.; Andriukaitis, D. An Effective Method of Vehicle Speed Evaluation in Systems Using Anisotropic Magneto-Resistive Sensors. IEEE Intell. Transp. Syst. Mag. 2021, 13, 142–151. [Google Scholar] [CrossRef]
- Won, M. Intelligent Traffic Monitoring Systems for Vehicle Classification: A Survey. IEEE Access 2020, 8, 73340–73358. [Google Scholar] [CrossRef]
- Gheorghiu, R.A.; Iordache, V.; Stan, V.A. Urban traffic detectors—Comparison between inductive loop and magnetic sensors. In Proceedings of the 2021 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Pitesti, Romania, 1–3 July 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Álvarez-Bazo, F.; Sánchez-Cambronero, S.; Vallejo, D.; Glez-Morcillo, C.; Rivas, A.; Gallego, I. A Low-Cost Automatic Vehicle Identification Sensor for Traffic Networks Analysis. Sensors 2020, 20, 5589. [Google Scholar] [CrossRef] [PubMed]
- Sifuentes, E.; Casas, O.; Pallas-Areny, R. Wireless Magnetic Sensor Node for Vehicle Detection With Optical Wake-Up. IEEE Sens. J. 2011, 11, 1669–1676. [Google Scholar] [CrossRef]
- Gholamhosseinian, A.; Seitz, J. Vehicle Classification in Intelligent Transport Systems: An Overview, Methods and Software Perspective. IEEE Open J. Intell. Transp. Syst. 2021, 2, 173–194. [Google Scholar] [CrossRef]
- Markevicius, V.; Navikas, D.; Miklusis, D.; Andriukaitis, D.; Valinevicius, A.; Zilys, M.; Cepenas, M. Analysis of Methods for Long Vehicles Speed Estimation Using Anisotropic Magneto-Resistive (AMR) Sensors and Reference Piezoelectric Sensor. Sensors 2020, 20, 3541. [Google Scholar] [CrossRef] [PubMed]
- Okarma, K. Current Trends and Advances in Image Quality Assessment. Elektronika ir Elektrotechnika 2019, 25, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Mao, G.; Cheng, B.; Li, C.; Hui, Y.; Xu, Z.; Chen, J. MagMonitor: Vehicle Speed Estimation and Vehicle Classification Through A Magnetic Sensor. IEEE Trans. Intell. Transp. Syst. 2020, 1–12. [Google Scholar] [CrossRef]
- Prauzek, M.; Konecny, J.; Vitasek, M.; Bajgar, V.; Musilek, P. Powering Batteryless Embedded Platforms by Piezoelectric Transducers: A Pilot Study. Elektronika ir Elektrotechnika 2019, 25, 32–35. [Google Scholar] [CrossRef] [Green Version]
- Soni, N.; Malekian, R.; Andriukaitis, D.; Navikas, D. Internet of Vehicles based approach for road safety applications using sensor technologies. Wirel. Pers. Commun. 2019, 105, 1257–1284. [Google Scholar] [CrossRef] [Green Version]
- Okarma, K.; Fastowicz, J. Adaptation of Full-Reference Image Quality Assessment Methods for Automatic Visual Evaluation of the Surface Quality of 3D Prints. Elektronika ir Elektrotechnika 2019, 25, 57–62. [Google Scholar] [CrossRef]
- Surgailis, T.; Valinevicius, A.; Markevicius, V.; Navikas, D.; Andriukaitis, D. Avoiding forward car collision using stereo vision system. Elektronika ir Elektrotechnika 2012, 18, 37–40. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Kong, X.; Xu, M.; Sandrasegaran, K.; Zheng, J. Road Vehicle Detection and Classification Using Magnetic Field Measurement. IEEE Access 2019, 7, 52622–52633. [Google Scholar] [CrossRef]
- Wang, K.; Xiong, H.; Zhang, J.; Chen, H.; Dou, D.; Xu, C.-Z. SenseMag: Enabling Low-Cost Traffic Monitoring using Non-invasive Magnetic Sensing. IEEE Internet Things J. 2021, 8, 16666–16679. [Google Scholar] [CrossRef]
- Raut, S.V.; Jangam, S.A.; Rajpathak, B. Improving Vehicular Traffic Efficiency by Infrared Sensors. In Proceedings of the IEEE First International Conference on Smart Technologies for Power, Energy and Control (STPEC), Nagpur, India, 25–26 September 2020; pp. 1–6. [Google Scholar] [CrossRef]
- AbdelHaq, M.F.; Salman, A. Wireless Sensor Network for Traffic Monitoring. In Proceedings of the International Conference on Promising Electronic Technologies (ICPET), Jerusalem, Palestine, 16–17 December 2020; pp. 16–21. [Google Scholar] [CrossRef]
- Guan, Y.; Li, W.; Tan, J.; Zhu, Y.; Ding, X.; Xiong, Y.; Hou, Q. Research on Geomagnetic Waveform Detection and Vehicle Identification Technology. In Proceedings of the 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 12–14 March 2021; pp. 2343–2347. [Google Scholar] [CrossRef]
- Konecny, J.; Kromer, P.; Prauzek, M.; Musilek, P. Scan Matching by Cross-Correlation and Differential Evolution. Electronics 2019, 8, 856. [Google Scholar] [CrossRef] [Green Version]
- Cepenas, M.; Peng, B.; Andriukaitis, D.; Ravikumar, C.; Markevicius, V.; Dubauskiene, N.; Navikas, D.; Valinevicius, A.; Zilys, M.; Merfeldas, A.; et al. Research of PVDF Energy Harvester Cantilever Parameters for Experimental Model Realization. Electronics 2020, 9, 2030. [Google Scholar] [CrossRef]
- Paterova, T.; Prauzek, M. Estimating Harvestable Solar Energy from Atmospheric Pressure Using Deep Learning. Elektronika Ir Elektrotechnika 2021, 27, 18–25. [Google Scholar] [CrossRef]
- Markevicius, V.; Navikas, D.; Idzkowski, A.; Valinevicius, A.; Zilys, M.; Andriukaitis, D. Vehicle Speed and Length Estimation Using Data from Two Anisotropic Magneto-Resistive (AMR) Sensors. Sensors 2017, 17, 1778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Nr, # | Vehicle | Number of Signatures, # | Real Length, m | Mean Estimated Length, m | RMSE, m | STD, m |
---|---|---|---|---|---|---|
1 | Truck with a tank | 16 | 15.3 | 15.6 | 0.7 | 0.5 |
2 | MB Sprinter1 | 17 | 7.3 | 7.7 | 0.7 | 0.6 |
3 | Isuzu bus | 14 | 9.1 | 9.2 | 0.6 | 0.6 |
4 | Audi A6 | 16 | 4.1 | 5.0 | 1.0 | 0.3 |
5 | Audi A4_1 | 16 | 4.5 | 4.3 | 0.3 | 0.3 |
6 | VW Passat | 18 | 4.6 | 4.8 | 0.6 | 0.6 |
7 | Nissan Primera | 17 | 4.7 | 4.2 | 0.5 | 0.4 |
8 | MB Sprinter2 | 20 | 7.3 | 8.0 | 0.9 | 0.3 |
9 | Audi A4_2 | 20 | 4.5 | 4.2 | 0.2 | 0.1 |
10 | MB GLE | 15 | 4.8 | 4.5 | 0.5 | 0.5 |
11 | VW Sharan | 17 | 4.9 | 4.5 | 0.6 | 0.6 |
12 | VW Touran | 16 | 4.4 | 4.3 | 0.4 | 0.4 |
13 | VW Transporter | 14 | 5.3 | 5.2 | 0.3 | 0.3 |
14 | BMW serie 5 | 27 | 4.8 | 3.8 | 1.0 | 0.5 |
Total: | 243 | 0.6 | 0.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miklusis, D.; Markevicius, V.; Navikas, D.; Cepenas, M.; Balamutas, J.; Valinevicius, A.; Zilys, M.; Cuinas, I.; Klimenta, D.; Andriukaitis, D. Research of Distorted Vehicle Magnetic Signatures Recognitions, for Length Estimation in Real Traffic Conditions. Sensors 2021, 21, 7872. https://doi.org/10.3390/s21237872
Miklusis D, Markevicius V, Navikas D, Cepenas M, Balamutas J, Valinevicius A, Zilys M, Cuinas I, Klimenta D, Andriukaitis D. Research of Distorted Vehicle Magnetic Signatures Recognitions, for Length Estimation in Real Traffic Conditions. Sensors. 2021; 21(23):7872. https://doi.org/10.3390/s21237872
Chicago/Turabian StyleMiklusis, Donatas, Vytautas Markevicius, Dangirutis Navikas, Mindaugas Cepenas, Juozas Balamutas, Algimantas Valinevicius, Mindaugas Zilys, Inigo Cuinas, Dardan Klimenta, and Darius Andriukaitis. 2021. "Research of Distorted Vehicle Magnetic Signatures Recognitions, for Length Estimation in Real Traffic Conditions" Sensors 21, no. 23: 7872. https://doi.org/10.3390/s21237872
APA StyleMiklusis, D., Markevicius, V., Navikas, D., Cepenas, M., Balamutas, J., Valinevicius, A., Zilys, M., Cuinas, I., Klimenta, D., & Andriukaitis, D. (2021). Research of Distorted Vehicle Magnetic Signatures Recognitions, for Length Estimation in Real Traffic Conditions. Sensors, 21(23), 7872. https://doi.org/10.3390/s21237872