Fiber Optic Load Cells with Enhanced Sensitivity by Optical Vernier Effect
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peters, K. Polymer optical fiber sensors—A review. Smart Mater. Struct. 2011, 20, 013002. [Google Scholar] [CrossRef]
- Yin, S.; Ruffin, P.B.; Yu, F.T.S. Fiber Optic Sensors; CRC Press—Taylor & Francis Group: Boca Raton, FL, USA, 2008; ISBN 978-1-4200-5365-4. [Google Scholar]
- Gomes, A.D.; Becker, M.; Dellith, J.; Zibaii, M.I.; Latifi, H.; Rothhardt, M.; Bartelt, H.; Frazão, O. Multimode Fabry–Perot Interferometer Probe Based on Vernier Effect for Enhanced Temperature Sensing. Sensors 2019, 19, 453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paixão, T.; Araújo, F.; Antunes, P. Highly sensitive fiber optic temperature and strain sensor based on an intrinsic Fabry–Perot interferometer fabricated by a femtosecond laser. Opt. Lett. 2019, 44, 4833. [Google Scholar] [CrossRef] [PubMed]
- Paixão, T.; Ferreira, R.; Araújo, F.; Antunes, P. Hybrid intrinsic optical fiber sensor fabricated by femtosecond laser with enhanced sensitivity by Vernier effect. Opt. Laser Technol. 2021, 133, 106520. [Google Scholar] [CrossRef]
- Zhang, P.; Tang, M.; Gao, F.; Zhu, B.; Fu, S.; Ouyang, J.; Shum, P.P.; Liu, D. Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field. Opt. Express 2014, 22, 19581. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Sun, Q.; Li, B.; Luo, Y.; Lu, W.; Liu, D.; Shum, P.P.; Zhang, L. Highly sensitive refractive index sensor based on cascaded microfiber knots with Vernier effect. Opt. Express 2015, 23, 6662. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Y.; Liu, Y.; Gong, Z.; Liao, Y.Y.; Wang, X.S.; Chen, Q.M.; Yang, D.H.; Qu, S.L. Sensitivity amplification of bubble-based all-silica fiber liquid-pressure sensor by using femtosecond laser exposure. Opt. Commun. 2020, 462, 125291. [Google Scholar] [CrossRef]
- Gomes, A.D.; Kobelke, J.; Bierlich, J.; Dellith, J.; Rothhardt, M.; Bartelt, H.; Frazão, O. Giant refractometric sensitivity by combining extreme optical Vernier effect and modal interference. Sci. Rep. 2020, 10, 19313. [Google Scholar] [CrossRef] [PubMed]
- Domingues, M.D.F.; Rosa, V.; Nepomuceno, A.C.; Tavares, C.; Alberto, N.; Andre, P.; Radwan, A.; da Costa Antunes, P.F. Wearable Devices for Remote Physical Rehabilitation Using a Fabry-Perot Optical Fiber Sensor: Ankle Joint Kinematic. IEEE Access 2020, 8, 109866–109875. [Google Scholar] [CrossRef]
- Domingues, M.F.; Antunes, P.; Alberto, N.; Frias, R.; Ferreira, R.A.S.; André, P. Cost effective refractive index sensor based on optical fiber micro cavities produced by the catastrophic fuse effect. Measurement 2016, 77, 265–268. [Google Scholar] [CrossRef]
- Antunes, P.F.C.; Domingues, M.F.F.; Alberto, N.J.; André, P.S. Optical Fiber Microcavity Strain Sensors Produced by the Catastrophic Fuse Effect. IEEE Photonics Technol. Lett. 2014, 26, 78–81. [Google Scholar] [CrossRef]
- Gomes, A.D.; Bartelt, H.; Frazão, O. Optical Vernier Effect: Recent Advances and Developments. Laser Photon. Rev. 2021, 15, 2000588. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Zhang, Y.N.; Zhao, Y. Fiber-optic sensors based on Vernier effect. Meas. J. Int. Meas. Confed. 2021, 167, 108451. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Liao, C.; Wang, G.; Li, Z.; Wang, Q.; Zhou, J.; Yang, K.; Zhong, X.; Zhao, J.; et al. High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer. Opt. Lett. 2014, 39, 2121–2124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Zhang, M.; Wan, M.; Lin, C.; Huang, S.; Liu, C.; He, Q.; Qiu, X.; Fang, X. Ultrasensitive refractive index sensor based on enhanced Vernier effect through cascaded fiber core-offset pairs. Opt. Express 2020, 28, 4145. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Liu, B.; Wu, J.; Zhao, L.; Sun, T.; Mao, Y.; Nan, T.; Wang, J. A Transverse Load Sensor with Ultra-Sensitivity Employing Vernier-Effect Improved Parallel-Structured Fiber-Optic Fabry-Perot Interferometer. IEEE Access 2019, 7, 120297–120303. [Google Scholar] [CrossRef]
- Wang, J.; Liu, B.; Wu, Y.; Mao, Y.; Zhao, L.; Sun, T.; Nan, T.; Han, Y. Temperature insensitive fiber Fabry-Perot/Mach-Zehnder hybrid interferometer based on photonic crystal fiber for transverse load and refractive index measurement. Opt. Fiber Technol. 2020, 56, 102163. [Google Scholar] [CrossRef]
- Ferreira, M.S.; Bierlich, J.; Kobelke, J.; Schuster, K.; Santos, J.L.; Frazão, O. Towards the control of highly sensitive Fabry-Pérot strain sensor based on hollow-core ring photonic crystal fiber. Opt. Express 2012, 20, 21946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jauregui-Vazquez, D.; Lopez-Dieguez, Y.; Sierra-Hernandez, J.M.; Perez-Maciel, M.; Avila-Garcia, M.S.; Vargas-Rodriguez, E.; Rojas-Laguna, R.; Estudillo-Ayala, J.M. Modified All-Fiber Fabry–Perot Interferometer and Its Refractive Index, Load, and Temperature Analyses. IEEE Photonics J. 2015, 7, 1–9. [Google Scholar] [CrossRef]
Sensor | w (cm) | h (cm) | l (cm) |
---|---|---|---|
LC1 | 1.00 ± 0.05 | 0.40 ± 0.05 | 3.00 ± 0.05 |
LC2 | 1.70 ± 0.05 | 0.90 ± 0.05 | 3.00 ± 0.05 |
Sensor | ST (nm °C−1) | R2 | M-Factor | SLoad (nm N−1) | R2 | M-Factor |
---|---|---|---|---|---|---|
LC1 | 0.074 ± 0.001 | 0.998 | -- | 0.053 ± 0.001 | 0.999 | -- |
LC2 | 0.153 ± 0.002 | 0.999 | -- | 0.102 ± 0.001 | 0.999 | -- |
OVE1 | 0.265 ± 0.002 | 0.999 | 3.6 ± 0.1 | 0.182 ± 0.004 | 0.988 | 3.4 ± 0.1 |
OVE2 | 0.66 ± 0.03 | 0.988 | 4.3 ± 0.3 | 0.433 ± 0.005 | 0.998 | 4.2 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paixão, T.; Ferreira, R.; Domingues, M.F.; Antunes, P. Fiber Optic Load Cells with Enhanced Sensitivity by Optical Vernier Effect. Sensors 2021, 21, 7737. https://doi.org/10.3390/s21227737
Paixão T, Ferreira R, Domingues MF, Antunes P. Fiber Optic Load Cells with Enhanced Sensitivity by Optical Vernier Effect. Sensors. 2021; 21(22):7737. https://doi.org/10.3390/s21227737
Chicago/Turabian StylePaixão, Tiago, Ricardo Ferreira, M. Fátima Domingues, and Paulo Antunes. 2021. "Fiber Optic Load Cells with Enhanced Sensitivity by Optical Vernier Effect" Sensors 21, no. 22: 7737. https://doi.org/10.3390/s21227737
APA StylePaixão, T., Ferreira, R., Domingues, M. F., & Antunes, P. (2021). Fiber Optic Load Cells with Enhanced Sensitivity by Optical Vernier Effect. Sensors, 21(22), 7737. https://doi.org/10.3390/s21227737