MIMO Antenna System for Modern 5G Handheld Devices with Healthcare and High Rate Delivery
Abstract
:1. Introduction
- We have designed an eight-element MIMO antenna system with a simple monopole radiating structure, which can cover sub-6 GHz (LTE band 43) frequency band for 5G technology.
- The isolation between the radiating elements is achieved low without using any decoupling structure and/or technique, and allows space for other RF components and devices.
- In addition, this system can also be easily fabricated and integratable with other RF systems, subsystems, and components. Furthermore, it was ensured that the proposed work must use intra-band contiguous carrier aggregation to increase the data throughput. Next, antenna design of the proposed work is presented in detail.
2. Antenna Design
3. Results and Discussion
3.1. Parametric Analysis
3.2. Fabrication and Measurement
3.2.1. S-Parameters
3.2.2. Radiation Patterns
3.2.3. MIMO Parameters
3.3. Hand Effect Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kiani, S.H.; Altaf, A.; Abdullah, M.; Muhammad, F.; Shoaib, N.; Anjum, M.R.; Damaševiˇcius, R.; Blažauskas, T. Eight element side edged framed MIMO antenna array for future 5G smartphones. Micromachines 2020, 11, 956. [Google Scholar] [CrossRef]
- Wong, K.L.; Lu, J.Y.; Chen, L.Y.; Li, W.Y.; Ban, Y.L. 8-antenna and 16-antenna arrays using the quad-antenna linear array as a building block for the 3.5-GHz LTE MIMO operation in the smartphone. Microw. Opt. Technol. Lett. 2016, 58, 174–181. [Google Scholar] [CrossRef]
- Rao, L.Y.; Tsai, C.J. 8-loop antenna array in the 5 inches size smartphone for 5G communication the 3.4 GHz-3.6 GHz band MIMO operation. In Proceedings of the 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama), Toyama, Japan, 1–4 August 2018; pp. 1995–1999. [Google Scholar]
- Sharawi, M.S.; Faouri, Y.S.; Iqbal, S.S. Design of anelectrically small meander antenna for 258 LTE mobile terminals in the 800 MHz band. In Proceedings of the 2011 IEEE GCC Conference and Exhibition 259 (GCC), Dubai, UAE, 19–22 February 2011; pp. 213–216. [Google Scholar]
- Yang, L.; Li, T. Box-folded four-element MIMO antenna system for LTE handsets. Electron. Lett. 2015, 51, 440–441. [Google Scholar] [CrossRef]
- Choi, J.; Hwang, W.; You, C.; Jung, B.; Hong, W. Four-element reconfigurable coupled loop MIMO antenna featuring LTE full-band operation for metallic-rimmed smartphone. IEEE Trans. Antennas Propag. 2018, 67, 99–107. [Google Scholar] [CrossRef]
- Gao, C.; Li, X.Q.; Lu, W.J.; Wong, K.L. Conceptual design and implementation of a four266 element MIMO antenna system packaged within a metallic handset. Microw. Opt. Technol. Lett. 2018, 60, 436–444. [Google Scholar] [CrossRef]
- Parchin, N.O.; Al-Yasir, Y.I.; Basherlou, H.J.; Abdulkhaleq, A.M.; Sajedin, M.; Abd-Alhameed, R.A.; Noras, J.M. Modified PIFA array design with improved bandwidth and isolation for 5G mobile handsets. In Proceedings of the 2019 IEEE 2nd 5G World Forum (5GWF), Dresden, Germany, 30 September–2 October 2019; pp. 199–203. [Google Scholar]
- Qin, Z.; Geyi, W.; Zhang, M.; Wang, J. Printed eight-element MIMO system for compact and thin 5G mobile handest. Electron. Lett. 2016, 52, 416–418. [Google Scholar] [CrossRef]
- Sehrai, D.A.; Abdullah, M.; Altaf, A.; Kiani, S.H.; Muhammad, F.; Tufail, M.; Irfan, M.; Glowacz, A.; Rahman, S. A Novel High Gain Wideband MIMO Antenna for 5G Millimeter Wave Applications. Electronics 2020, 9, 1031. [Google Scholar] [CrossRef]
- Abdullah, M.; Kiani, S.H.; Iqbal, A. Eight element multiple-input multiple-output (MIMO) antenna for 5G mobile applications. IEEE Access 2019, 7, 134488–134495. [Google Scholar] [CrossRef]
- Hu, W.; Qian, L.; Gao, S.; Wen, L.H.; Luo, Q.; Xu, H.; Liu, X.; Liu, Y.; Wang, W. Dual-band eight-element MIMO array using multi-slot decoupling technique for 5G terminals. IEEE Access 2019, 7, 153910–153920. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, R.; Luo, Y.; Yang, G. Compact eight-element antenna array for triple-band MIMO operation in 5G mobile terminals. IEEE Access 2020, 8, 19433–19449. [Google Scholar] [CrossRef]
- Parchin, N.O.; Al-Yasir, Y.I.A.; Ali, A.H.; Elfergani, I.; Noras, J.M.; Rodriguez, J.; Abd284 Alhameed, R.A. Eight-element dual-polarized MIMO slot antenna system for 5G smartphone applications. IEEE Access 2019, 7, 15612–15622. [Google Scholar] [CrossRef]
- Li, M.Y.; Ban, Y.L.; Xu, Z.Q.; Wu, G.; Kang, K.; Yu, Z.F. Eight-port orthogonally dual-polarized antenna array for 5G smartphone applications. IEEE Trans. Antennas Propag. 2016, 64, 3820–3830. [Google Scholar] [CrossRef]
- Li, M.Y.; Ban, Y.L.; Xu, Z.Q.; Guo, J.; Yu, Z.F. Tri-polarized 12-antenna MIMO array for future 5G smartphone applications. IEEE Access 2017, 6, 6160–6170. [Google Scholar] [CrossRef]
- Kiani, S.H.; Ren, X.C.; Bashir, A.; Rafiq, A.; Anjum, M.R.; Kamal, M.M.; Din, B.U.; Muhammad, F. Square-Framed T Shape mmwave Antenna Array at 28 GHz for Future 5G Devices. Int. J. Antennas Propag. 2021, 2021, 2286011. [Google Scholar] [CrossRef]
- Biswas, A.; Gupta, V.R. Design and development of low profile MIMO antenna for 5G new radio smartphone applications. Wirel. Pers. Commun. 2020, 111, 1695–1706. [Google Scholar] [CrossRef]
- Kiani, S.H.; Ren, X.C.; Anjum, M.R.; Mahmood, K.; Ali, H.; Jan, N.; Bashir, M.A.; Khan, M.A. A Novel Shape Compact Antenna for Ultrawideband Applications. Int. J. Antennas Propag. 2021, 2021, 7004799. [Google Scholar] [CrossRef]
- Al-Hadi, A.A.; Ilvonen, J.; Valkonen, R.; Viikari, V. Eight-element antenna array for diversity and MIMO mobile terminal in LTE 3500 MHz band. Microw. Opt. Technol. Lett. 2014, 56, 1323–1327. [Google Scholar] [CrossRef]
- Abdullah, M.; Ban, Y.L.; Kang, K.; Li, M.Y.; Amin, M. Eight-element antenna array at 3.5 GHz for MIMO wireless application. Prog. Electromagn. Res. 2017, 78, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Ikram, M.; Hussain, R.; Sharawi, M.S. A 4G MIMO antenna system with dual function ground slots. In Proceedings of the 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP), Kaohsiung, Taiwan, 26–29 July 2016; pp. 199–200. [Google Scholar]
- Liang, X.L.; Denidni, T.A. H-shaped dielectric resonator antenna for wideband applications. IEEE Antennas Wirel. Propag. Lett. 2008, 7, 163–166. [Google Scholar] [CrossRef]
- Raheel, K.; Altaf, A.; Waheed, A.; Kiani, S.H.; Sehrai, D.A.; Tubbal, F.; Raad, R. E-shaped H-slotted dual band mmwave antenna for 5G technology. Electronics 2021, 10, 1019. [Google Scholar] [CrossRef]
- Li, Y.; Sim, C.-Y.-D.; Luo, Y.; Yang, G. High-isolation 3.5 GHz eight-antenna MIMO array using balanced open-slot antenna element for 5G smartphones. IEEE Trans. Antennas Propag. 2019, 67, 3820–3830. [Google Scholar] [CrossRef]
- Abdullah, M.; Altaf, A.; Anjum, M.R.; Arain, Z.A.; Jamali, A.A.; Alibakhshikenari, M.; Limiti, E. Future Smartphone: MIMO Antenna System for 5G Mobile Terminals. IEEE Access 2021, 9, 91593–91603. [Google Scholar] [CrossRef]
Frequency | 3.50 GHz | 3.45 GHz |
MEG1 | −4.659 | −4.932 |
MEG2 | −5.012 | −5.321 |
MEG3 | −5.797 | −5.881 |
MEG4 | −4.987 | −4.965 |
MEG5 | −5.176 | −5.581 |
MEG6 | −5.413 | −5.678 |
MEG7 | −5.011 | −5.317 |
MEG8 | −5.230 | −5.310 |
Antenna Operational Mode | Efficiency in 3.5 GHz Band (%) | Percentage Decrease in Efficiency w.r.t Free Space Mode (%) | |
---|---|---|---|
Free Space | Ant 2 & Ant 8 | 64 | Not Applicable |
Ant 4 & Ant 6 | 38 | ||
SHM | Ant 2 & Ant 8 | 50 | 21.8 |
Ant 4 & Ant 6 | 30 | 21 | |
DHM | Ant 2 & Ant 8 | 40 | 37.5 |
Ant 4 & Ant 6 | 28 | 26.3 |
Refs. | Frequency (GHz) | Elements | Elements Size | Efficiency (%) | Board Size | Channel Capacity | Isolation (dB) | Gain (dBi) | ECC |
---|---|---|---|---|---|---|---|---|---|
[1] | 3.4–3.6 (−10 dB) | 8 | 14 × 6 | 62–76 | 150 × 75 | 38.5 | <−12 | N/A | <0.05 |
[3] | 3.4–3.6 (−10 dB) | 8 | 14.2 × 9.4 | >40 | 145 × 70 | N/A | −16 | 2 | <0.2 |
[4] | 3.45–3.55 (−6 dB) | 4 | 25 × 13 | 40–50 | 120 × 73 | 15 | <−15 | 1.9 | <0.31 |
[6] | 3.4–3.6 (−10 dB) | 6 | 8.5 × 3 | 50–60 | 136 × 68 | 31.25 | <−13 | 4.8 | <0.15 |
[8] | 2.5–3.6 (−10 dB) | 8 | 7 × 6 | 45–65 | 150 × 70 | 34.25 | <−15 | 2.3 | <0.2 |
[25] | 3.4–3.6 (−10 dB) | 8 | 21.5 × 3 | 62–76 | 150 × 80 | 40.8 | <17.5 | N/A | <0.05 |
[26] | 3.3–3.7 (−6 dB) | 8 | 4.6 × 5.6 | 50–70 | 136 × 68 | 38.1 | −15 | 4 | <0.1 |
Proposed | 3.4–3.6 (−6 dB) | 8 | 12.5–18.5 | 42–65 | 150 × 70 | 38 | <−12 | 2.87 | <0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiani, S.H.; Altaf, A.; Anjum, M.R.; Afridi, S.; Arain, Z.A.; Anwar, S.; Khan, S.; Alibakhshikenari, M.; Lalbakhsh, A.; Khan, M.A.; et al. MIMO Antenna System for Modern 5G Handheld Devices with Healthcare and High Rate Delivery. Sensors 2021, 21, 7415. https://doi.org/10.3390/s21217415
Kiani SH, Altaf A, Anjum MR, Afridi S, Arain ZA, Anwar S, Khan S, Alibakhshikenari M, Lalbakhsh A, Khan MA, et al. MIMO Antenna System for Modern 5G Handheld Devices with Healthcare and High Rate Delivery. Sensors. 2021; 21(21):7415. https://doi.org/10.3390/s21217415
Chicago/Turabian StyleKiani, Saad Hassan, Ahsan Altaf, Muhammad Rizwan Anjum, Sharjeel Afridi, Zulfiqar Ali Arain, Sadia Anwar, Salahuddin Khan, Mohammad Alibakhshikenari, Ali Lalbakhsh, Muhammad Abbas Khan, and et al. 2021. "MIMO Antenna System for Modern 5G Handheld Devices with Healthcare and High Rate Delivery" Sensors 21, no. 21: 7415. https://doi.org/10.3390/s21217415
APA StyleKiani, S. H., Altaf, A., Anjum, M. R., Afridi, S., Arain, Z. A., Anwar, S., Khan, S., Alibakhshikenari, M., Lalbakhsh, A., Khan, M. A., Abd-Alhameed, R. A., & Limiti, E. (2021). MIMO Antenna System for Modern 5G Handheld Devices with Healthcare and High Rate Delivery. Sensors, 21(21), 7415. https://doi.org/10.3390/s21217415