Compressive Sensing-Based SAR Image Reconstruction from Sparse Radar Sensor Data Acquisition in Automotive FMCW Radar System
Abstract
:1. Introduction
2. SAR Image Reconstruction with FMCW Radar Sensor Data
2.1. Principles of FMCW Radar System
2.2. Fundamentals of Range Migration Algorithm
3. Proposed SAR Image Reconstruction with Compressive Sensing
4. Performance Evaluation
4.1. Radar Sensor Data Acquisition
4.2. SAR Image Reconstruction Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADC | Analog-to-digital converter |
CS | Compressive sensing |
DSP | Digital signal processor |
FFT | Fast Fourier transform |
FM | Frequency mixer |
FMCW | Frequency-modulated continuous wave |
I/Q | In-phase and quadrature |
LPF | Low-pass filter |
RMA | Range migration algorithm |
Rx | Receiving antenna |
SAR | Synthetic aperture radar |
SNR | Signal-to-noise ratio |
Tx | Transmitting antenna |
VCO | Voltage-controlled oscillator |
WG | Waveform generator |
References
- Khader, M.; Cherian, S. An Introduction to Automotive LIDAR, Texas Instruments. Available online: https://www.ti.com/lit/wp/slyy150a/slyy150a.pdf (accessed on 30 September 2021).
- Cohen, M.N. An overview of high range resolution radar techniques. In Proceedings of the NTC ’91-National Telesystems Conference, Atlanta, GA, USA, 26–27 March 1991; pp. 107–115. [Google Scholar]
- Chen, S.; Wang, H.; Xu, F.; Jin, Y. Target classification using the deep convolutional networks for SAR images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4806–4817. [Google Scholar] [CrossRef]
- Li, C.; Cummings, J.; Lam, J.; Graves, E.; Wu, W. Radar remote monitoring of vital signs. IEEE Microw. Mag. 2009, 1, 47–56. [Google Scholar] [CrossRef]
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef] [Green Version]
- Bamler, R. A comparison of range-Doppler and wavenumber domain SAR focusing algorithms. IEEE Trans. Geosci. Remote Sens. 1992, 30, 706–713. [Google Scholar] [CrossRef]
- Raney, R.K.; Runge, H.; Bamler, R.; Cumming, I.G.; Wong, F.H. Precision SAR processing using chirp scaling. IEEE Trans. Geosci. Remote Sens. 1994, 32, 786–799. [Google Scholar] [CrossRef]
- Cafforio, C.; Prati, C.; Rocca, F. SAR data focusing using seismic migration techniques. IEEE Trans. Aerosp. Electron. Syst. 1991, 27, 194–207. [Google Scholar] [CrossRef]
- Wu, H.; Zwick, T. Automotive SAR for parking lot detection. In Proceedings of the 2009 German Microwave Conference, Munich, Germany, 16–18 March 2009; pp. 1–8. [Google Scholar]
- Li, C.J.; Ling, H. An investigation on the radar signatures of small consumer drones. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 649–652. [Google Scholar] [CrossRef]
- Fernández, M.G.; López, Y.Á.; Arboleya, A.A.; Valdés, B.G.; Vaqueiro, Y.R.; Andrés, F.L.-H.; García, A.P. Synthetic aperture radar imaging system for landmine detection using a ground penetrating radar on board a unmanned aerial vehicle. IEEE Access 2018, 6, 45100–45112. [Google Scholar] [CrossRef]
- Iqbal, H.; Sajjad, M.B.; Mueller, M.; Waldschmidt, C. SAR imaging in an automotive scenario. In Proceedings of the 2015 IEEE 15th Mediterranean Microwave Symposium (MMS), Lecce, Italy, 30 November–2 December 2015; pp. 1–4. [Google Scholar]
- Feger, R.; Haderer, A.; Stelzer, A. Experimental verification of a 77-GHz synthetic aperture radar system for automotive applications. In Proceedings of the 2017 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Nagoya, Japan, 19–21 March 2017; pp. 111–114. [Google Scholar]
- Laribi, A.; Hahn, M.; Dickmann, J.; Waldschmidt, C. Performance investigation of automotive SAR imaging. In Proceedings of the 2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Munich, Germany, 15–17 April 2018; pp. 1–4. [Google Scholar]
- Alonso, M.T.; Lopez-Dekker, P.; Mallorqui, J.J. A Novel strategy for radar imaging based on compressive sensing. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4285–4295. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Zhang, Y. A novel compressive sensing algorithm for SAR imaging. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 708–720. [Google Scholar] [CrossRef]
- Baselice, F.; Ferraioli, G.; Matuozzo, G.; Pascazio, V.; Schirinzi, G. Compressive sensing for in depth focusing in 3D automotive imaging radar. In Proceedings of the 2015 3rd International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa), Pisa, Italy, 17–19 June 2015; pp. 71–74. [Google Scholar]
- Correas-Serrano, A.; González-Huici, M.A. Experimental evaluation of compressive sensing for DoA estimation in automotive radar. In Proceedings of the 2018 19th International Radar Symposium (IRS), Bonn, Germany, 20–22 June 2018; pp. 1–10. [Google Scholar]
- Gishkori, S.; Mulgrew, B. Azimuth enhancement for automotive SAR imaging. In Proceedings of the 2018 International Conference on Radar (RADAR), Brisbane, Australia, 27–31 August 2018; pp. 1–5. [Google Scholar]
- Jung, D.; Kang, H.; Kim, C.; Park, J.; Park, S. Sparse scene recovery for high-resolution automobile FMCW SAR via scaled compressed sensing. IEEE Trans. Geosci. Remote Sens. 2019, 57, 10136–10146. [Google Scholar] [CrossRef]
- Phippen, D.; Daniel, L.; Hoare, E.; Cherniakov, M.; Gashinova, M. Compressive sensing for automotive 300GHz 3D imaging radar. In Proceedings of the 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 21–25 September 2020; pp. 1–6. [Google Scholar]
- Yanik, M.E.; Torlak, M. Near-field MIMO-SAR millimeter-wave imaging with sparsely sampled aperture data. IEEE Access 2019, 7, 31801–31819. [Google Scholar] [CrossRef]
- Scott, S.; Wawrzynek, J. Compressive sensing and sparse antenna arrays for indoor 3-D microwave imaging. In Proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO), Kos, Greece, 28 August–2 September 2017; pp. 1314–1318. [Google Scholar]
- Candés, E.; Romberg, J. l1-Magic: Recovery of Sparse Signals via Convex Programming; Caltech: Pasadena, CA, USA, 2005; pp. 1–19. [Google Scholar]
- Patole, S.M.; Torlak, M.; Wang, D.; Ali, M. Automotive radars: A review of signal processing techniques. IEEE Signal Process. Mag. 2017, 34, 22–35. [Google Scholar] [CrossRef]
- Stolt, R.H. Migration by Fourier Transform. Geophysics 1978, 43, 23–48. [Google Scholar] [CrossRef]
- Boyd, S.; Vandenberghe, L. Convex Optimization, 1st ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
Radar Parameters | Value |
---|---|
Center frequency, | 78.79 (GHz) |
Bandwidth, | 3.57 (GHz) |
Effective bandwidth, | 1.79 (GHz) |
Sweep time, | 151 (s) |
The number of time samples in each chirp, | 256 |
The number of chirps, | 8 |
Sampling frequency | 10 (MHz) |
Range resolution | 8.4 (cm) |
Velocity resolution | 0.79 (m/s) |
Ratio of Radar Sensor Data Used | Correlation Coefficient |
---|---|
90% | 0.93 |
80% | 0.89 |
70% | 0.83 |
60% | 0.76 |
50% | 0.69 |
40% | 0.66 |
30% | 0.59 |
20% | 0.38 |
10% | 0.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Jung, Y.; Lee, M.; Lee, W. Compressive Sensing-Based SAR Image Reconstruction from Sparse Radar Sensor Data Acquisition in Automotive FMCW Radar System. Sensors 2021, 21, 7283. https://doi.org/10.3390/s21217283
Lee S, Jung Y, Lee M, Lee W. Compressive Sensing-Based SAR Image Reconstruction from Sparse Radar Sensor Data Acquisition in Automotive FMCW Radar System. Sensors. 2021; 21(21):7283. https://doi.org/10.3390/s21217283
Chicago/Turabian StyleLee, Seongwook, Yunho Jung, Myeongjin Lee, and Wookyung Lee. 2021. "Compressive Sensing-Based SAR Image Reconstruction from Sparse Radar Sensor Data Acquisition in Automotive FMCW Radar System" Sensors 21, no. 21: 7283. https://doi.org/10.3390/s21217283
APA StyleLee, S., Jung, Y., Lee, M., & Lee, W. (2021). Compressive Sensing-Based SAR Image Reconstruction from Sparse Radar Sensor Data Acquisition in Automotive FMCW Radar System. Sensors, 21(21), 7283. https://doi.org/10.3390/s21217283