Postural Control Strategies and Balance-Related Factors in Individuals with Traumatic Transtibial Amputations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Protocol
2.3. Outcome Measurements
2.3.1. Motor Control Test
2.3.2. Limits of Stability
2.4. Statistical Analyses
3. Results
4. Discussion
4.1. Aspects of Automatic and Volitional Postural Control Strategies
4.2. The Influence of Balance-Related Factors on Postural Control Mechanisms
4.3. Study Limits
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Takakusaki, K.J. Functional neuroanatomy for posture and gait control. Mov. Disord. 2017, 10, 1–17. [Google Scholar] [CrossRef]
- Geurts, A.C.; Mulder, T.W.; Nienhuis, B.; Rijken, R.A. Dual-Task assessment of reorganization of postural control in persons with lower limb amputation. Arch. Phys. Med. Rehabil. 1991, 72, 1059–1064. [Google Scholar]
- Ku, P.X.; Abu Osman, N.A.; Wan Abas, W.A. Balance control in lower extremity amputees during quiet standing: A systematic review. Gait Posture 2014, 39, 672–682. [Google Scholar] [CrossRef] [Green Version]
- Hermodsson, Y.; Ekdahl, C.; Persson, B.M.; Roxendal, G. Standing balance in trans-tibial amputees following vascular disease or trauma: A comparative study with healthy subjects. Prosthet. Orthot. Int. 1994, 18, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Mayer, A.; Tihanyi, J.; Bretz, K.; Csende, Z.; Bretz, E.; Horváth, M. Adaptation to altered balance conditions in unilateral amputees due to atherosclerosis: A randomized controlled study. BMC Musculoskelet. Disord. 2011, 12, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nederhand, M.J.; Van Asseldonk, E.H.; van der Kooij, H.; Rietman, H.S. Dynamic Balance Control (DBC) in lower leg amputee subjects; contribution of the regulatory activity of the prosthesis side. Clin. Biomech. 2012, 27, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Hak, L.; van Dieën, J.H.; van der Wurff, P.; Houdijk, H. Stepping asymmetry among individuals with unilateral transtibial limb loss might be functional in terms of gait stability. Phys. Ther. 2014, 94, 1480–1488. [Google Scholar] [CrossRef] [Green Version]
- Beursken, R.; Wilken, J.M.; Dingwell, J.B. Dynamic stability of superior vs. inferior body segments in individuals with transtibial amputation walking in destabilizing environments. J. Biomech. 2014, 47, 3072–3079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanicek, N.; Strike, S.; McNaughton, L.; Polman, R. Postural responses to dynamic perturbations in amputee fallers versus nonfallers: A comparative study with able-bodied subjects. Arch. Phys. Med. Rehabil. 2009, 90, 1018–1025. [Google Scholar] [CrossRef]
- Molina-Rueda, F.; Molero-Sánchez, A.; Alguacil-Diego, I.M.; Carratalá-Tejada, M.; Cuesta-Gómez, A.; Miangolarra-Page, J.C. Weight symmetry and latency scores for unexpected surface perturbations in subjects with traumatic and vascular unilateral transtibial amputation. PM&R 2016, 8, 235–240. [Google Scholar] [CrossRef]
- Vrieling, A.H.; van Keeken, H.G.; Schoppen, T.; Otten, E.; Hof, A.L.; Halbertsma, J.P.; Postema, K. Balance control on a moving platform in unilateral lower limb amputees. Gait Posture 2008, 28, 222–228. [Google Scholar] [CrossRef] [Green Version]
- Rusaw, D.F. Adaptations from the prosthetic and intact limb during standing on a sway-referenced support surface for transtibial prosthesis users. Disabil. Rehabil. Assist. Technol. 2019, 14, 682–691. [Google Scholar] [CrossRef]
- Olenšek, A.; Zadravec, M.; Burger, H.; Matjačić, Z. Dynamic balancing responses in unilateral transtibial amputees following outward-directed perturbations during slow treadmill walking differ considerably for amputated and non-amputated side. J. NeuroEng. Rehabil. 2021, 18, 123. [Google Scholar] [CrossRef] [PubMed]
- Butowicz, C.M.; Krupenevich, R.L.; Acasio, J.C.; Dearth, C.L.; Hendershot, B.D. Relationships between mediolateral trunk-pelvic motion, hip strength, and knee joint moments during gait among persons with lower limb amputation. Clin. Biomech. 2020, 71, 160–166. [Google Scholar] [CrossRef]
- Morgan, S.J.; Friedly, J.L.; Amtmann, D.; Salem, R.; Hafner, B.J. Cross-Sectional assessment of factors related to pain intensity and pain interference in lower limb prosthesis users. Arch. Phys. Med. Rehabil. 2017, 98, 105–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrokhi, S.; Mazzone, B.; Eskridge, S.; Shannon, K.; Hill, O.T. Incidence of overuse musculoskeletal injuries in military service members with traumatic lower limb amputation. Arch. Phys. Med. Rehabil. 2018, 99, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Claret, C.R.; Herget, G.W.; Kouba, L.; Wiest, D.; Adler, J.; von Tscharner, V.; Stieglitz, T.; Pasluosta, C. Neuromuscular adaptations and sensorimotor integration following a unilateral transfemoral amputation. J. Neuroeng. Rehabil. 2019, 16, 115. [Google Scholar] [CrossRef] [PubMed]
- Charkhkar, H.; Christie, B.P.; Triolo, R.J. Sensory neuroprosthesis improves postural stability during Sensory Organization Test in lower-limb amputees. Sci. Rep. 2020, 10, 698. [Google Scholar] [CrossRef]
- Molero-Sánchez, A.; Molina-Rueda, F.; Alguacil-Diego, I.M.; Cano-de la Cuerda, R.; Miangolarra-Page, J.C. Comparison of stability limits in men with traumatic transtibial amputation and a nonamputee control group. PM&R 2015, 7, 123–129. [Google Scholar] [CrossRef]
- Barnett, C.T.; Vanicek, N.; Polman, R.C. Postural responses during volitional and perturbed dynamic balance tasks in new lower limb amputees: A longitudinal study. Gait Posture 2013, 37, 319–325. [Google Scholar] [CrossRef] [Green Version]
- Lenka, P.K.; Tiberwala, D.N. Effect of stump length on postural steadiness during quiet stance in unilateral trans-tibial amputee. Al Ameen J. Med. Sci. 2010, 3, 50–57. [Google Scholar]
- Isakov, E.; Burger, H.; Gregoric, M.; Marincek, C. Stump length as related to atrophy and strength of the thigh muscles in trans-tibial amputees. Prosthet. Orthot. Int. 1996, 20, 96–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolarova, B.; Janura, M.; Svoboda, Z.; Elfmark, M. Limits of stability in persons with transtibial amputation with respect to prosthetic alignment alterations. Arch. Phys. Med. Rehabil. 2013, 94, 2234–2240. [Google Scholar] [CrossRef] [PubMed]
- Barnett, C.T.; Vanicek, N.; Rusaw, D.F. Do predictive relationships exist between postural control and falls efficacy in unilateral transtibial prosthesis users? Arch. Phys. Med. Rehabil. 2018, 99, 2271–2278. [Google Scholar] [CrossRef] [Green Version]
- Rusaw, D.F.; Rudholmer, E.; Barnett, C.T. Development of a limits of stability protocol for use in transtibial prosthesis users: Learning effects and reliability of outcome variables. Gait Posture 2017, 58, 539–545. [Google Scholar] [CrossRef] [Green Version]
- Seth, M.; Lamberg, E. Standing balance in people with trans-tibial amputation due to vascular causes: A literature review. Prosthet. Orthot. Int. 2017, 41, 345–355. [Google Scholar] [CrossRef]
- NeuroCom International. Smart Eqiutest® System Operator’s Manual (Version 8); NeuroCom International: Clackamus, OR, USA, 1998. [Google Scholar]
- Nashner, L.M. Computerized dynamic posturography. In Handbook of Balance Function Testing; Jacobson, G.P., Newman, C.W., Kartush, J.M., Eds.; Thomson Delmar Learning: Clifton Park, NY, USA, 1997; pp. 280–307. [Google Scholar]
- Harro, C.C.; Garascia, C.J. Reliability and validity of computerized force platform measures of balance function in healthy older adults. J. Geriatr. Phys. Ther. 2019, 42, E57–E66. [Google Scholar] [CrossRef]
- Kavounoudias, A.; Tremblay, C.; Gravel, D.; Iancu, A.; Forget, R. Bilateral changes in somatosensory sensibility after unilateral below-knee amputation. Arch. Phys. Med. Rehabil. 2005, 86, 633–640. [Google Scholar] [CrossRef]
- Hunter, S.W.; Batchelor, F.; Hill, K.D.; Hill, A.M.; Mackintosh, S.; Payne, M. Risk factors for falls in people with a lower limb amputation: A systematic review. PM&R 2017, 9, 170–180. [Google Scholar] [CrossRef]
- Melzer, I.; Benjuya, N.; Kaplanski, J.; Alexander, N. Association between ankle muscle strength and limit of stability in older adults. Age Ageing 2009, 38, 119–123. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, R.A.; Lee, T.D. Motor Control and Learning: A Behavioral Emphasis, 3rd ed.; Human Kinetics: Champaign, IL, USA, 1999. [Google Scholar]
- Majumdar, K.; Lenka, P.K.; Mondal, R.K.; Kumar, R.; Triberwala, D.N. Relation of stump length with various gait parameters in trans-tibial amputees. Online J. Health Allied. Sci. 2008, 7, 2. [Google Scholar]
- Arwert, H.J.; van Doorn-Loogman, M.H.; Koning, J.; Terburg, M.; Rol, M.; Roebroeck, M.E. Residual-Limb quality and functional mobility 1 year after transtibial amputation caused by vascular insufficiency. J. Rehabil. Res. Dev. 2007, 44, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Subbarao, K.V.; Bajoria, S. The effect of stump length on the rehabilitation outcome in unilateral below-knee amputees for vascular disease. Clin. Rehab. 1995, 9, 327–330. [Google Scholar] [CrossRef]
Control Group | Traumatic Transtibial Amputees Group | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Gender | Age (years) | Height (cm) | Weight (kg) | Gender | Age (years) | Height (cm) | Weight (kg) | Amputated Leg | Prosthesis Use (years) | Stump Length (cm) 1 | At Least One Fall in the Last Year |
F | 23 | 164 | 63 | F | 23 | 165 | 67 | left | 1 | 28 | Yes |
M | 26 | 183 | 81 | M | 25 | 198 | 87 | left | 2 | 27 | No |
M | 36 | 169 | 76 | M | 36 | 185 | 82 | left | 11 | 19 | No |
M | 42 | 182 | 73 | M | 40 | 192 | 85 | right | 7 | 17 | Yes |
M | 44 | 189 | 94 | M | 41 | 177 | 101 | left | 9 | 20 | No |
M | 46 | 171 | 80 | M | 41 | 197 | 78 | right | 4 | 31.5 | No |
M | 48 | 177 | 67 | M | 46 | 180 | 88 | left | 0.8 | 14 | No |
F | 48 | 170 | 68 | F | 49 | 170 | 105 | right | 4 | 17.5 | Yes |
M | 49 | 172 | 76 | M | 49 | 181 | 85 | right | 3 | 22 | Yes |
M | 50 | 182 | 117 | M | 52 | 184 | 74 | left | 2 | 17 | No |
M | 52 | 188 | 85 | M | 52 | 176 | 79 | left | 21 | 18.5 | Yes |
M | 56 | 178 | 88 | M | 54 | 170 | 85 | left | 5 | 25 | No |
M | 57 | 176 | 84 | M | 54 | 172 | 89 | left | 23 | 21 | No |
F | 57 | 172 | 66 | F | 54 | 160 | 90 | right | 0.7 | 12 | Yes |
M | 59 | 177 | 84 | M | 58 | 175 | 106 | right | 0.8 | 17 | No |
M | 59 | 179 | 74 | M | 63 | 172 | 76 | right | 15 | 35 | No |
M | 62 | 185 | 85 | M | 69 | 180 | 115 | left | 3 | 21 | No |
M | 67 | 173 | 75 | M | 69 | 172 | 95 | left | 45 | 12 | Yes |
Mean | 48.94 | 177.6 | 79.78 | 48.61 | 178.11 | 88.17 | 8.74 | 20.81 | |||
SD | 11.73 | 6.88 | 12.49 | 12.85 | 10.29 | 12.34 | 11.33 | 6.37 |
Translation Type | Control Group | TTA Group | p | d | Translation Type | Control Group | TTA Group | p | d |
---|---|---|---|---|---|---|---|---|---|
Weight bearing symmetry score (%) | |||||||||
Small_B | 98.17 (6.74) | 87.33 (12.12) | 0.003 | 1.10 | Small_F | 96.28 (7.43) | 86.22 (12.58) | 0.006 | 0.97 |
Medium_B | 97.11 (5.93) | 87.11 (12.87) | 0.006 | 1.00 | Medium_F | 91.10 (21.06) | 81.50 (21.14) | 0.007 | 0.96 |
Large_B | 95.67 (5.67) | 83.56 (20.47) | 0.025 | 0.81 | Large_F | 96.61 (6.41) | 85.56 (12.65) | 0.002 | 1.1 |
Latency score (ms) 1 | |||||||||
Small_B | 147.22 (15.65) | 154.44 (17.90) | 0.210 | 0.43 | Small_F | 151.67 (22.03) | 151.11 (20.26) | 0.940 | 0.03 |
Medium_B | 141.11 (12.78) | 142.78 (11.79) | 0.690 | 0.14 | Medium_F | 145.56 (15.80) | 148.89 (27.42) | 0.660 | 0.15 |
Large_B | 139.44 (13.92) | 135.56 (13.38) | 0.400 | 0.28 | Large_F | 140.56 (13.49) | 133 (11.88) | 0.097 | 0.57 |
Direction | Control Group | TTA Group | p | d | Direction | Control Group | TTA Group | p | d |
---|---|---|---|---|---|---|---|---|---|
Maximum excursion (%) | |||||||||
Forward | 87.61 (12.56) | 72.28 (14.25) | 0.002 | 1.14 | Backward | 77.39 (10.58) | 74.56 (17.98) | 0.568 | 0.19 |
Forward_I/R | 87.44 (14.32) | 81.67 (12.03) | 0.199 | 0.44 | Backward_P/L | 93.22 (9.92) | 80.56 (12.97) | 0.002 | 1.1 |
I/Rt | 88.00 (10.82) | 80.06 (8.64) | 0.020 | 0.81 | P/L | 91.11 (7.78) | 76.00 (7.49) | <0.001 | 1.98 |
Backward_I/R | 93.78 (10.20) | 86.78 (13.09) | 0.082 | 0.60 | Forward_P/L | 94.78 (11.95) | 71.06 (17.21) | <0.001 | 1.60 |
Endpoint excursion (%) | |||||||||
Forward | 75.56 (19.16) | 62.72 (17.05) | 0.041 | 0.71 | Backward | 56.11 (13.67) | 49.89 (18.08) | 0.252 | 0.39 |
Forward_I/R | 76.11 (16.72) | 75.89 (12.47) | 0.964 | 0.57 | Backward_P/L | 77.22 (14.82) | 66.72 (21.60) | 0.098 | 0.57 |
I/R | 79.00 (8.85) | 70.94 (18.08) | 0.102 | 0.02 | P/L | 81.44 (7.98) | 66.33 (12.52) | <0.001 | 1.44 |
Backward_I/R | 63.11 (19.04) | 77.5 (16.68) | 0.405 | 0.28 | Forward_P/L | 82.61 (24.11) | 62.22 (18.15) | 0.007 | 0.96 |
Movement velocity (deg/s) | |||||||||
Forward | 4.72 (1.91) | 4.00 (2.52) | 0.064 | 0.40 | Backward | 3.67 (1.27) | 2.56 (1.10) | 0.008 | 0.93 |
Forward_I/R | 5.83 (2.1) | 4.42 (1.99) | 0.047 | 0.69 | Backward_P/L | 5.21 (2.07) | 4.04 (2.18) | 0.109 | 0.55 |
I/R | 5.82 (2.76) | 4.47 (2.16) | 0.088 | 0.59 | P/L | 6.49 (2.91) | 4.99 (2.54) | 0.026 | 0.55 |
Backward_I/R | 5.89 (2.08) | 3.37 (1.47) | <0.001 | 1.40 | Forward_P/L | 5.93 (1.9) | 3.99 (2.52) | 0.013 | 0.87 |
Directional control (%) | |||||||||
Forward | 88.22 (5.11) | 82.22 (12.54) | 0.073 | 0.63 | Backward | 75.78 (9.97) | 67.89 (15.98) | 0.085 | 0.59 |
Forward_I/R | 75.28 (10.28) | 78.50 (10.34) | 0.355 | -0.31 | Backward_P/L | 64.17 (23.19) | 64.11 (16.06) | 0.993 | 0.00 |
I/R | 84.83 (6.71) | 84.28 (8.71) | 0.831 | 0.07 | P/L | 84.56 (7.28) | 86.89 (4.60) | 0.258 | −0.38 |
Backward_I/R | 93.78 (10.20) | 74.17 (12.20) | 0.046 | -0.69 | Forward_P/L | 79.44 (7.96) | 77.44 (12.67) | 0.574 | 0.19 |
Translation Type | Stump Length | Prosthesis Use Duration | Translation Type | Stump Length | Prosthesis Use Duration | ||||
---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | ||
Weight bearing symmetry score (%) | |||||||||
Small_B | −0.19 | 0.45 | 0.37 | 0.13 | Small_F | −0.53 | 0.02 | 0.47 | 0.048 |
Medium_B | −0.26 | 0.29 | 0.21 | 0.41 | Medium_F | −0.44 | 0.08 | 0.27 | 0.29 |
Large_B | −0.19 | 0.45 | 0.3 | 0.24 | Large_F | −0.55 | 0.02 | 0.52 | 0.03 |
Latency score (ms) | |||||||||
Small_B | −0.25 | 0.32 | 0.43 | 0.07 | Small_F | −0.13 | 0.62 | 0.12 | 0.63 |
Medium_B | −0.56 | 0.02 | 0.32 | 0.20 | Medium_F | −0.45 | 0.06 | 0.62 | 0.01 |
Large_B | −0.38 | 0.12 | 0.34 | 0.17 | Large_F | −0.54 | 0.03 | 0.20 | 0.44 |
Direction | Stump Length | Prosthesis Use Duration | Direction | Stump Length | Prosthesis Use Duration | ||||
---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | ||
Maximum excursion (%) | |||||||||
Forward | −0.18 | 0.47 | 0.16 | 0.52 | Backward | 0.36 | 0.14 | −0.23 | 0.36 |
Forward_I/R | −0.40 | 0.10 | 0.34 | 0.17 | Backward_P/L | −0.10 | 0.69 | −0.01 | 0.97 |
Intact/Right | −0.01 | 0.95 | 0.24 | 0.34 | Prosthetic/Left | 0.03 | 0.92 | 0.54 | 0.02 |
Backward_I/R | −0.29 | 0.24 | −0.01 | 0.98 | Forward_P/L | −0.07 | 0.77 | 0.21 | 0.41 |
Endpoint excursion (%) | |||||||||
Forward | −0.33 | 0.19 | 0.27 | 0.27 | Backward | 0.45 | 0.06 | −0.3 | 0.23 |
Forward_I/R | −0.25 | 0.32 | 0.19 | 0.44 | Backward_P/L | −0.26 | 0.30 | −0.14 | 0.58 |
Intact/Right | −0.16 | 0.54 | 0.03 | 0.92 | Prosthetic/Left | −0.28 | 0.27 | 0.63 | <0.001 |
Backward_I/R | −0.36 | 0.15 | 0.26 | 0.29 | Forward_P/L | −0.21 | 0.40 | 0.20 | 0.42 |
Movement velocity (deg/s) | |||||||||
Forward | −0.13 | 0.62 | 0.29 | 0.24 | Backward | 0.30 | 0.23 | −0.08 | 0.74 |
Forward_I/R | −0.02 | 0.95 | 0.21 | 0.41 | Backward_P/L | −0.28 | 0.27 | 0.19 | 0.45 |
Intact/Right | −0.13 | 0.62 | 0.13 | 0.61 | Prosthetic/Left | −0.11 | 0.66 | 0.14 | 0.58 |
Backward_I/R | 0.03 | 0.91 | 0.05 | 0.86 | Forward_P/L | 0.20 | 0.24 | −0.21 | 0.40 |
Directional control (%) | |||||||||
Forward | −0.02 | 0.92 | −0.11 | 0.67 | Backward | 0.16 | 0.53 | −0.25 | 0.31 |
Forward_I/R | −0.19 | 0.44 | −0.14 | 0.57 | Backward_P/L | 0.35 | 0.15 | −0.14 | 0.57 |
Intact/Right | 0.43 | 0.08 | −0.14 | 0.59 | Prosthetic/Left | −0.01 | 0.96 | 0.42 | 0.09 |
Backward_I/R | 0.42 | 0.09 | −0.262 | 0.29 | Forward_P/L | −0.08 | 0.75 | 0.01 | 0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolářová, B.; Janura, M.; Svoboda, Z.; Kolář, P.; Tečová, D.; Elfmark, M. Postural Control Strategies and Balance-Related Factors in Individuals with Traumatic Transtibial Amputations. Sensors 2021, 21, 7284. https://doi.org/10.3390/s21217284
Kolářová B, Janura M, Svoboda Z, Kolář P, Tečová D, Elfmark M. Postural Control Strategies and Balance-Related Factors in Individuals with Traumatic Transtibial Amputations. Sensors. 2021; 21(21):7284. https://doi.org/10.3390/s21217284
Chicago/Turabian StyleKolářová, Barbora, Miroslav Janura, Zdeněk Svoboda, Petr Kolář, Dagmar Tečová, and Milan Elfmark. 2021. "Postural Control Strategies and Balance-Related Factors in Individuals with Traumatic Transtibial Amputations" Sensors 21, no. 21: 7284. https://doi.org/10.3390/s21217284
APA StyleKolářová, B., Janura, M., Svoboda, Z., Kolář, P., Tečová, D., & Elfmark, M. (2021). Postural Control Strategies and Balance-Related Factors in Individuals with Traumatic Transtibial Amputations. Sensors, 21(21), 7284. https://doi.org/10.3390/s21217284