A 16-Channel Dipole Antenna Array for Human Head Magnetic Resonance Imaging at 10.5 Tesla
Abstract
:1. Introduction
2. Materials and Methods
2.1. Comparison of Coupling and B1+ Efficiency between an LD Set and Two Dipole Antennas
2.2. Setup for the Experiments
2.3. Construction of the 16-Channel LD and Dipole Antenna Arrays
2.4. Setup for the Simulation and Numerical Analysis
3. Results
3.1. Comparison of Coupling and B1+ Efficiency with an LD Set and Two-Channel Dipole Antennas
3.2. S-parameters and Noise Covariance of the 16-Channel LD and Dipole Antenna Arrays
3.3. Comparison of B1+ Efficiency, 10 g SAR, and SAR Efficiency with the 16-Channel Arrays
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lauterbur, P.C. Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature 1973, 242, 190–191. [Google Scholar] [CrossRef]
- Mansfield, P. Multi-planar image formation using NMR spin echoes. J. Phys. C Solid State Phys. 1977, 10, L55. [Google Scholar] [CrossRef]
- Hoult, D.I. Sensitivity and power deposition in a high-field imaging experiment. J. Magn. Reson. Imaging 2000, 12, 46–67. [Google Scholar] [CrossRef]
- Ibrahim, T.S.; Hue, Y.K.; Tang, L. Understanding and manipulating the RF fields at high field MRI. NMR Biomed. 2009, 22, 927–936. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, J.T.; Garwood, M.; Collins, C.M.; Liu, W.; DelaBarre, L.; Adriany, G.; Andersen, P.; Merkle, H.; Goebel, R.; Smith, M. 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn. Reson. Med. 2001, 46, 24–30. [Google Scholar] [CrossRef]
- Wang, C.; Shen, G.X. B1 field, SAR, and SNR comparisons for birdcage, TEM, and microstrip coils at 7 T. J. Magn. Reson. Imaging 2006, 24, 439–443. [Google Scholar] [CrossRef]
- van de Moortele, P.F.; Akgun, C.; Adriany, G.; Moeller, S.; Ritter, J.; Collins, C.; Smith, M.; Vaughan, J.T.; Uğurbil, K. B1 destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn. Reson. Med. 2005, 54, 1503–1518. [Google Scholar] [CrossRef] [PubMed]
- Winter, L.; Niendorf, T. Electrodynamics and radiofrequency antenna concepts for human magnetic resonance at 23.5 áT (1áGHz) and beyond. Magn. Reson. Mater. Phys. Biol. Med. 2016, 29, 641–656. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.X.; Wang, J.; Zhang, X.; Collins, C.; Smith, M.; Liu, H.; Zhu, X.; Vaughan, J.T.; Ugurbil, K.; Chen, W. Analysis of wave behavior in lossy dielectric samples at high field. Magn. Reson. Med. 2002, 47, 982–989. [Google Scholar] [CrossRef] [PubMed]
- Guérin, B.; Villena, J.F.; Polimeridis, A.G.; Adalsteinsson, E.; Daniel, L.; White, J.K.; Wald, L.L. The ultimate signal-to-noise ratio in realistic body models. Magn. Reson. Med. 2017, 78, 1969–1980. [Google Scholar] [CrossRef] [PubMed]
- Ugurbil, K. Imaging at ultrahigh magnetic fields: History, challenges, and solutions. Neuroimage 2018, 168, 7–32. [Google Scholar] [CrossRef] [PubMed]
- Duyn, J.H.; van Gelderen, P.; Li, T.Q.; de Zwart, J.A.; Koretsky, A.P.; Fukunaga, M. High-field MRI of brain cortical substructure based on signal phase. Proc. Natl. Acad. Sci. USA 2007, 104, 11796–11801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koopmans, P.J.; Barth, M.; Orzada, S.; Norris, D.G. Multi-echo fMRI of the cortical laminae in humans at 7 T. Neuroimage 2011, 56, 1276–1285. [Google Scholar] [CrossRef] [PubMed]
- Moser, E.; Stahlberg, F.; Ladd, M.E.; Trattnig, S. 7-T MR—from research to clinical applications? NMR Biomed. 2012, 25, 695–716. [Google Scholar] [CrossRef] [PubMed]
- Collins, C.M.; Smith, M.B. Signal-to-noise ratio and absorbed power as functions of main magnetic field strength, and definition of “90°” RF pulse for the head in the birdcage coil. Magn. Reson. Med. 2001, 45, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Collins, C.M.; Smith, M.B. Calculations of B1 distribution, SNR, and SAR for a surface coil adjacent to an anatomically-accurate human body model. Magn. Reson. Med. 2001, 45, 692–699. [Google Scholar] [CrossRef] [PubMed]
- I.E. Commission. Medical Electrical Equipment–Part 2–33: Particular Requirements for the Basic Safety and Essential Performance of Magnetic Resonance Equipment for Medical Diagnosis; IEC: Geneva, Switzerland, 2010. [Google Scholar]
- Hong, S.M.; Park, J.H.; Woo, M.K.; Kim, Y.B.; Cho, Z.H. New design concept of monopole antenna array for UHF 7T MRI. Magn. Reson. Med. 2014, 71, 1944–1952. [Google Scholar] [CrossRef] [PubMed]
- Lakshmanan, K.; Cloos, M.; Brown, R.; Lattanzi, R.; Sodickson, D.K.; Wiggins, G.C. The “loopole” antenna: A hybrid coil combining loop and electric dipole properties for ultra-high-field MRI. Concepts Magn. Reson. B 2020. [Google Scholar] [CrossRef] [PubMed]
- Oezerdem, C.; Winter, L.; Graessl, A.; Paul, K.; Els, A.; Weinberger, O.; Rieger, J.; Kuehne, A.; Dieringer, M.; Hezel, F. 16-channel bow tie antenna transceiver array for cardiac MR at 7.0 tesla. Magn. Reson. Med. 2016, 75, 2553–2565. [Google Scholar] [CrossRef] [PubMed]
- Raaijmakers, A.; Ipek, O.; Klomp, D.; Possanzini, C.; Harvey, P.R.; Lagendijk, J.J.; van den Berg, C.A. Design of a radiative surface coil array element at 7 T: The single-side adapted dipole antenna. Magn. Reson. Med. 2011, 66, 1488–1497. [Google Scholar] [CrossRef] [PubMed]
- Wiggins, G.C.; Zhang, B.; Lattanzi, R.; Chen, G.; Sodickson, D. The electric dipole array: An attempt to match the ideal current pattern for central SNR at 7 Tesla. In Proceedings of the 20th Annual Meeting ISMRM, Melbourne, Australia, 5–11 May 2012; p. 541. [Google Scholar]
- Woo, M.K.; DelaBarre, L.; Waks, M.; Lee, J.; Lagore, R.; Jungst, S.; Grant, A.; Eryaman, Y.; Ugurbil, K.; Adriany, G. Comparison of 16-channel asymmetric sleeve antenna and dipole antenna transceiver arrays at 10.5 Tesla MRI. IEEE Trans. Med. Imaging 2020, 40, 1147–1156. [Google Scholar] [CrossRef]
- Woo, M.K.; DelaBarre, L.; Waks, M.T.; Park, Y.W.; Lagore, R.L.; Jungst, S.; Eryaman, Y.; Oh, S.; Ugurbil, K.; Adriany, G. Evaluation of 8-Channel Radiative Antenna Arrays for Human Head Imaging at 10.5 Tesla. Sensors 2021, 21, 6000. [Google Scholar] [CrossRef] [PubMed]
- Woo, M.K.; Suk-Min, H.; Jongho, L.; Chang-Ki, K.; Sung-Yeon, P.; Young-Don, S.; Kim, Y.B.; Cho, Z.H. Extended monopole antenna array with individual shield (EMAS) coil: An improved monopole antenna design for brain imaging at 7 tesla MRI. Magn. Reson. Med. 2016, 75, 2566–2572. [Google Scholar] [CrossRef] [PubMed]
- Woo, M.K.; DelaBarre, L.; Byeong-Yeul, L.; Waks, M.; Lagore, R.; Radder, J.; Yigitcan, E.; Ugurbil, K.; Adriany, G. Evaluation of a 16-channel transceiver loop+ dipole antenna array for human head imaging at 10.5 tesla. IEEE Access 2020, 8, 203555–203563. [Google Scholar] [CrossRef] [PubMed]
- Ertürk, M.A.; Raaijmakers, A.; Adriany, G.; Uğurbil, K.; Metzger, G.J. A 16-channel combined loop-dipole transceiver array for 7 T esla body MRI. Magn. Reson. Med. 2017, 77, 884–894. [Google Scholar] [CrossRef] [Green Version]
- Eryaman, Y.; Bastien, G.; Boris, K.; Azma, M.; Herraiz, J.L.; Kosior, R.K.; Adrian, M.; Angel, T.; Norberto, M.; Hernandez-Tamames, J.A. SAR reduction in 7T C-spine imaging using a “dark modes” transmit array strategy. Magn. Reson. Med. 2015, 73, 1533–1539. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Ertürk, A.; Grant, A.; Wu, X.; Lagore, R.; DelaBarre, L.; Eryaman, Y.; Adriany, G.; Auerbach, E.J.; van de Moortele, P.F. First in-vivo human imaging at 10.5 T: Imaging the body at 447 MHz. Magn. Reson. Med. 2019, 84, 289–303. [Google Scholar] [CrossRef]
- Steensma, B.; van de Moortele, P.F.; Ertürk, A.; Grant, A.; Adriany, G.; Luijten, P.; Klomp, D.; van den Berg, N.; Metzger, G.; Raaijmakers, A. Introduction of the snake antenna array: Geometry optimization of a sinusoidal dipole antenna for 10.5 T body imaging with lower peak SAR. Magn. Reson. Med. 2020, 84, 2885–2896. [Google Scholar] [CrossRef]
- Clément, J.; Gruetter, R.; Ipek, Ö. A combined 32-channel receive-loops/8-channel transmit-dipoles coil array for whole-brain MR imaging at 7T. Magn. Reson. Med. 2019, 82, 1229–1241. [Google Scholar] [CrossRef] [Green Version]
- Connell, I.R.; Menon, R.S. Shape Optimization of an Electric Dipole Array for 7 Tesla Neuroimaging. IEEE Trans. Med. Imaging 2019, 38, 2177–2187. [Google Scholar] [CrossRef]
- Mak, A.C.; Rowell, C.R.; Murch, R.D. Isolation enhancement between two closely packed antennas. IEEE Trans. Antennas Propag. 2008, 56, 3411–3419. [Google Scholar] [CrossRef]
- Yan, X.; Gore, J.C.; Grissom, W.A. Self-decoupled radiofrequency coils for magnetic resonance imaging. Nat. Commun. 2018, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Christ, A.; Wolfgang, K.; Hahn, E.G.; Katharina, H.; Marcel, Z.; Esra, N.; Wolfgang, R.; Rolf, J.; Bautz, W.; Chen, J. The Virtual Family—development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys. Med. Biol. 2009, 55, N23. [Google Scholar] [CrossRef] [PubMed]
- Raaijmakers, A.J.; Italiaander, M.; Voogt, I.; Luijten, P.; Hoogduin, J.; Klomp, D.W.; van den Berg, C.A. The fractionated dipole antenna: A new antenna for body imaging at 7 T esla. Magn. Reson. Med. 2016, 75, 1366–1374. [Google Scholar] [CrossRef]
- Beck, B.; Jenkins, K.A.; Rocca, J.; Fitzsimmons, J. Tissue-equivalent phantoms for high frequencies. Concepts Magn. Reson. B 2004, 20, 30–33. [Google Scholar] [CrossRef]
- Yarnykh, V.L. Actual flip-angle imaging in the pulsed steady state: A method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn. Reson. Med. 2007, 57, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, V.; Vanello, N.; Giovannetti, G.; de Marchi, D.; Lombardi, M.; Landini, L.; Santarelli, M.F. B1+/actual flip angle and reception sensitivity mapping methods: Simulation and comparison. Magn. Reson. Imaging 2011, 29, 717–722. [Google Scholar] [CrossRef]
- Jesmanowicz, A.J.; Hyde, S.; Froncisz, W.; Kneeland, B.J. Noise correlation. Magn. Reson. Med. 1991, 20, 36–47. [Google Scholar] [CrossRef]
- Borkowski, K.; Krzyżak, A.T. The generalized Stejskal-Tanner equation for non-uniform magnetic field gradients. J. Magn. Reson. 2018, 296, 23–28. [Google Scholar] [CrossRef]
- Krzyżak, A.T.; Olejniczak, Z. Improving the accuracy of PGSE DTI experiments using the spatial distribution of b matrix. Magn. Reson. Imaging 2015, 33, 286–295. [Google Scholar] [CrossRef]
- Ogawa, S.; Lee, T.; Stepnoski, R.; Chen, W.; Zhu, X.; Ugurbil, K. An approach to probe some neural systems interaction by functional MRI at neural time scale down to milliseconds. Proc. Natl. Acad. Sci. USA 2000, 97, 11026–11031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uğurbil, K. Magnetic resonance imaging at ultrahigh fields. IEEE Trans. Biomed. Eng. 2014, 61, 1364–1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stehling, M.K.; Turner, R.; Mansfield, P. Echo-planar imaging: Magnetic resonance imaging in a fraction of a second. Science 1991, 254, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Turner, R.; le Bihan, D.; Maier, J.; Vavrek, R.; Hedges, L.K.; Pekar, J. Echo-planar imaging of intravoxel incoherent motion. Radiology 1990, 177, 407–414. [Google Scholar] [CrossRef]
- Sadeghi-Tarakameh, A.; DelaBarre, L.; Lagore, R.; Torrado-Carvajal, A.; Wu, X.; Grant, A.; Adriany, G.; Metzger, G.; van de Moortele, P.F.; Ugurbil, K. In vivo human head MRI at 10.5 T: A radiofrequency safety study and preliminary imaging results. Magn. Reson. Med. 2020, 84, 484–496. [Google Scholar] [CrossRef] [PubMed]
- Avdievich, N.; Hoffmann, J.; Shajan, G.; Pfrommer, A.; Giapitzakis, I.A.; Scheffler, K.; Henning, A. Evaluation of transmit efficiency and SAR for a tight fit transceiver human head phased array at 9.4 T. NMR Biomed. 2017, 30, e3680. [Google Scholar] [CrossRef] [PubMed]
- Shajan, G.; Kozlov, M.; Hoffmann, J.; Turner, R.; Scheffler, K.; Pohmann, R. A 16-channel dual-row transmit array in combination with a 31-element receive array for human brain imaging at 9.4 T. Magn. Reson. Med. 2014, 71, 870–879. [Google Scholar] [CrossRef] [PubMed]
- Adriany, G.; van de Moortele, P.F.; Ritter, J.; Moeller, S.; Auerbach, E.; Akgün, C.; Snyder, C.; Vaughan, T.; Uğurbil, K. A geometrically adjustable 16-channel transmit/receive transmission line array for improved RF efficiency and parallel imaging performance at 7 Tesla. Magn. Reson. Med. 2008, 59, 590–597. [Google Scholar] [CrossRef]
- Adriany, G.; Auerbach, E.; Snyder, C.; Gözübüyük, A.; Moeller, S.; Ritter, J.; van de Moortele, P.F.; Vaughan, T.; Uğurbil, K. A 32-channel lattice transmission line array for parallel transmit and receive MRI at 7 tesla. Magn. Reson. Med. 2010, 63, 1478–1485. [Google Scholar] [CrossRef] [Green Version]
- Woo, M.K.; Lagore, R.; DelaBarre, L.; Lee, B.-Y.; Eryaman, Y.; Radder, J.; Erturk, A.; Metzger, G.; Moortele, P.v.d.; Ugurbil, K. A 16-channel transceiver loop+ dipole antennas head array for human head imaging at 10.5 T. In Proceedings of the IEEE-ICEAA, Verona, Italy, 11–15 September 2017; pp. 1649–1652. [Google Scholar]
16-Channel LD | 16-Channel Dipole | |
---|---|---|
S11 (Reflection) | −12.2 dB to −24.3 dB | −14.2 dB to −29.8 dB |
S21 (Coupling) -Among the adjacent | −8.1 dB to −24.2 dB | −7.1 dB to −18.3 dB |
S31 (Coupling) -Among second nearest | −12.4 dB to −22.4 dB | −13.8 dB to −26.9 dB |
16-Channel LD | 16-Channel Dipole | ||
---|---|---|---|
Phantom | B1+ efficiency (μT/√W) -Simulation | 0.52 | 0.68 |
B1+ efficiency (μT/√W) -Experiment | 0.44 | 0.61 | |
Peak 10g SAR (W/kg) | 0.47 | 0.65 | |
SAR efficiency (µT) | 0.76 | 0.82 | |
Virtual human head model (Duke) | B1+ efficiency (μT/√W) | 0.57 | 0.67 |
Peak 10g SAR (W/kg) | 0.36 | 0.52 | |
SAR efficiency (µT) | 0.95 | 0.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woo, M.K.; DelaBarre, L.; Waks, M.; Radder, J.; Choi, U.-S.; Lagore, R.; Ugurbil, K.; Adriany, G. A 16-Channel Dipole Antenna Array for Human Head Magnetic Resonance Imaging at 10.5 Tesla. Sensors 2021, 21, 7250. https://doi.org/10.3390/s21217250
Woo MK, DelaBarre L, Waks M, Radder J, Choi U-S, Lagore R, Ugurbil K, Adriany G. A 16-Channel Dipole Antenna Array for Human Head Magnetic Resonance Imaging at 10.5 Tesla. Sensors. 2021; 21(21):7250. https://doi.org/10.3390/s21217250
Chicago/Turabian StyleWoo, Myung Kyun, Lance DelaBarre, Matt Waks, Jerahmie Radder, Uk-Su Choi, Russell Lagore, Kamil Ugurbil, and Gregor Adriany. 2021. "A 16-Channel Dipole Antenna Array for Human Head Magnetic Resonance Imaging at 10.5 Tesla" Sensors 21, no. 21: 7250. https://doi.org/10.3390/s21217250
APA StyleWoo, M. K., DelaBarre, L., Waks, M., Radder, J., Choi, U.-S., Lagore, R., Ugurbil, K., & Adriany, G. (2021). A 16-Channel Dipole Antenna Array for Human Head Magnetic Resonance Imaging at 10.5 Tesla. Sensors, 21(21), 7250. https://doi.org/10.3390/s21217250