Suppression of Continuous Wave Interference in Loran-C Signal Based on Sparse Optimization Using Tunable Q-Factor Wavelet Transform and Discrete Cosine Transform
Abstract
:1. Introduction
2. Materials and Methods
2.1. Signal and Interference Separation Model
Algorithm 1 Block-Coordinate-Relaxation. |
Input: the number of iterations N, the received signal s, the threshold coefficient ; Output: Loran-C signal component , continuous wave interference component ; Initialize: , threshold , threshold ; for N do end for return , ; |
2.2. Sparse Representation Dictionary Construction Strategy
2.2.1. Tunable Q-Factor Wavelet Transform
2.2.2. Discrete Cosine Transform
3. Results and Discussion
3.1. Synthetic Data Example
3.2. Actual Data Example
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Tehrani, A.K.Z.; Pourmohammad, A. Loran-C cycle identification and ECD estimation in presence of white Gaussian noise. In Proceedings of the 2016 IEEE 10th International Conference on Application of Information and Communication Technologies (AICT), Baku, Azerbaijan, 12–14 October 2016; pp. 1–4. [Google Scholar]
- Pierce, J. An introduction to Loran. IEEE Aerosp. Electron. Syst. Mag. 1990, 5, 16–33. [Google Scholar] [CrossRef]
- Qiu, D.; Boneh, D.; Lo, S.C.; Enge, P. Reliable Location-Based Services from Radio Navigation Systems. Sensors 2010, 10, 11369–11389. [Google Scholar] [CrossRef]
- Griffioen, J.W.; Oonincx, P.J. Suitability of Low-Frequency Navigation Systems for Artillery Positioning in a GNSS Denied Environment. J. Navig. 2013, 66, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Son, P.W.; Kim, W.H.; Rhee, J.H.; Seo, J. Effect of Outlier Removal from Temporal ASF Corrections on Multichain Loran Positioning Accuracy. In Proceedings of the 2020 20th International Conference on Control, Automation and Systems (ICCAS), Busan, Korea, 13–16 October 2020; pp. 824–826. [Google Scholar]
- Son, P.W.; Rhee, J.H.; Seo, J. Novel Multichain-Based Loran Positioning Algorithm for Resilient Navigation. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 666–679. [Google Scholar] [CrossRef]
- Zhou, L.; Xi, X.; Zhang, J.; Pu, Y. A New Method for Loran-C ASF Calculation over Irregular Terrain. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 1738–1744. [Google Scholar] [CrossRef]
- Johnson, G.; Swaszek, P.; Hartnett, R.; Shalaev, R.; Wiggins, M. An Evaluation of eLoran as a Backup to GPS. In Proceedings of the 2007 IEEE Conference on Technologies for Homeland Security, Woburn, MA, USA, 16–17 May 2007; pp. 95–100. [Google Scholar]
- Williams, P.; Basker, S.; Ward, N. e-Navigation and the Case for eLoran. J. Navig. 2008, 61, 473–484. [Google Scholar] [CrossRef]
- Johnson, G.; Shalaev, R.; Hartnett, R.; Swaszek, P.; Narins, M. Can LORAN meet GPS backup requirements? IEEE Aerosp. Electron. Syst. Mag. 2005, 20, 3–12. [Google Scholar] [CrossRef]
- Offermans, G.; Bartlett, S.; Schue, C. Providing a Resilient Timing and UTC Service Using eLoran in the United States. Annu. Navig. 2017, 64, 339–349. [Google Scholar] [CrossRef]
- Hwang, J.; Son, P.W.; Seo, J. TDOA-based ASF Map Generation to Increase Loran Positioning Accuracy in Korea. In Proceedings of the 2018 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), JeJu, Korea, 24–26 June 2018; pp. 206–212. [Google Scholar]
- Son, P.W.; Rhee, J.H.; Hwang, J.; Seo, J. Universal Kriging for Loran ASF Map Generation. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 1828–1842. [Google Scholar] [CrossRef]
- Son, P.W.; Park, S.G.; Seo, K.; Park, S.; Fang, T. Preliminary study of the re-radiation effect of Loran signal to improve the positioning accuracy. In Proceedings of the 2019 European Navigation Conference (ENC), Warsaw, Poland, 9–12 April 2019; pp. 1–4. [Google Scholar]
- Yan, W.; Zhao, K.; Li, S.; Wang, X.; Hua, Y. Precise Loran-C Signal Acquisition Based on Envelope Delay Correlation Method. Sensors 2020, 20, 2329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, A. Estimation of Loran-C Ionospheric Signal Parameters via ESPRIT Algorithm. In Proceedings of the Second European Conference on Antennas and Propagation, EuCAP, Edinburgh, UK, 11–16 November 2007; pp. 1–5. [Google Scholar]
- Eltoft, T. Cancelation of Continuous Wave Interferences in Loran-c Receivers Using an Adaptive Predictor. In Proceedings of the Signal Processing Symposium, Stavanger, Norway, 30 August–2 September 1995; pp. 167–172. [Google Scholar]
- Fisher, A. Loran-C cycle identification in hard-limiting receivers. IEEE Trans. Aerosp. Electron. Syst. 2000, 36, 290–297. [Google Scholar] [CrossRef]
- Bayat, M.; Madani, M. Loran phase code revisited for continuous wave interference cancellation. Iet Sci. Meas. Technol. 2017, 11, 322–330. [Google Scholar] [CrossRef]
- Liu, B.W.; Wang, X.G. Narrow Band Interference Suppression of Loran-c Signal. GNSSWorld of China. 2011. Available online: https://en.cnki.com.cn/Article_en/CJFDTotal-QUDW201105008.htm (accessed on 20 April 2021).
- Ting, Z.; Yu, H.; Xinghui, W.; Wenhe, Y. Research on Pretreatment Method of eLORAN Received Signal Based on Spectral Subtraction. In Proceedings of the 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chengdu, China, 20–22 December 2019; Volume 1, pp. 605–612. [Google Scholar]
- Starck, J.L.; Elad, M.; Donoho, D. Image decomposition via the combination of sparse representations and a variational approach. IEEE Trans. Image Process. 2005, 14, 1570–1582. [Google Scholar] [CrossRef] [Green Version]
- Selesnick, I. Wavelet Transform with Tunable Q-Factor. IEEE Trans. Signal Process. 2011, 59, 3560–3575. [Google Scholar] [CrossRef]
- Selesnick, I. Sparse signal representations using the tunable Q-factor wavelet transform. In Proceedings of the Wavelets and Sparsity XIV, San Diego, CA, USA, 27 September 2011. [Google Scholar]
- Chen, X.; Chen, W.; Wang, X.; Wang, W. Sparsity-optimized separation of body waves and ground-roll by constructing dictionaries using tunable Q-factor wavelet transforms with different Q-factors. Geophys. J. Int. 2017, 211, 621–636. [Google Scholar] [CrossRef]
- Cai, G.; Chen, X.; He, Z. Sparsity-enabled signal decomposition using tunable Q-factor wavelet transform for fault feature extraction of gearbox. Mech. Syst. Signal Process. 2013, 41, 34–53. [Google Scholar] [CrossRef]
- Li, J.; Wang, H.; Song, L.; Cui, L. A novel feature extraction method for roller bearing using sparse decomposition based on self-Adaptive complete dictionary. Measurement 2019, 148, 106934. [Google Scholar] [CrossRef]
- Ahmed, N.; Natarajan, T.; Rao, K. Discrete Cosine Transform. IEEE Trans. Comput. 1974, 23, 90–93. [Google Scholar] [CrossRef]
- The U.S. Coast Guard Auxiliary. Loran-c User Handbook; United States Department of Transportation: Washington, DC, USA, 1992.
- Yang, S.; Lee, C.B.; Lee, Y.K.; Lee, J.K.; Kim, Y.; Lee, S. Accuracy Improvement Technique for Timing Application of LORAN-C Signal. IEEE Trans. Instrum. Meas. 2011, 60, 2648–2654. [Google Scholar] [CrossRef]
- Bayat, M.; Madani, M. Analysis of Cross-Rate Interference Cancelation by Use of a Novel Phase Code Interval in Loran Navigation System. Navig. J. Inst. Navig. 2017, 64, 365–376. [Google Scholar] [CrossRef]
- Bruce, A.; Sardy, S.; Tseng, P. Block coordinate relaxation methods for nonparamatric signal denoising. In Proceedings of the Wavelet Applications V, Orlando, FL, USA, 26 March 1998. [Google Scholar]
- Bayram, I.; Selesnick, I. Frequency-Domain Design of Overcomplete Rational-Dilation Wavelet Transforms. IEEE Trans. Signal Process. 2009, 57, 2957–2972. [Google Scholar] [CrossRef] [Green Version]
Loran-C Signal | Continuous Wave Interference | |
---|---|---|
TQWT with | 0.0214 | 0.0764 |
DCT | 0.0195 | 0.0156 |
SNR | Loran-C Signal | The Composite Signal | The Processed Signal |
---|---|---|---|
20 | 80.0000 us | 80.1731 us | 80.0181 us |
15 | 80.0000 us | 80.1245 us | 80.0173 us |
10 | 80.0000 us | 80.5043 us | 80.0273 us |
5 | 80.0000 us | 79.8822 us | 80.0456 us |
0 | 80.0000 us | 79.7070 us | 80.1341 us |
The Proposed Method | Adaptive Notch Filter Method | |
---|---|---|
SIR | 20.0893 dB | 20.0954 dB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.; Gao, J.; Yuan, Y.; Shi, Z.; Xi, X. Suppression of Continuous Wave Interference in Loran-C Signal Based on Sparse Optimization Using Tunable Q-Factor Wavelet Transform and Discrete Cosine Transform. Sensors 2021, 21, 7153. https://doi.org/10.3390/s21217153
Ma W, Gao J, Yuan Y, Shi Z, Xi X. Suppression of Continuous Wave Interference in Loran-C Signal Based on Sparse Optimization Using Tunable Q-Factor Wavelet Transform and Discrete Cosine Transform. Sensors. 2021; 21(21):7153. https://doi.org/10.3390/s21217153
Chicago/Turabian StyleMa, Wenwen, Jiuxiang Gao, Yanning Yuan, Zhensheng Shi, and Xiaoli Xi. 2021. "Suppression of Continuous Wave Interference in Loran-C Signal Based on Sparse Optimization Using Tunable Q-Factor Wavelet Transform and Discrete Cosine Transform" Sensors 21, no. 21: 7153. https://doi.org/10.3390/s21217153
APA StyleMa, W., Gao, J., Yuan, Y., Shi, Z., & Xi, X. (2021). Suppression of Continuous Wave Interference in Loran-C Signal Based on Sparse Optimization Using Tunable Q-Factor Wavelet Transform and Discrete Cosine Transform. Sensors, 21(21), 7153. https://doi.org/10.3390/s21217153